Dynamic Management of Key States for Reinforcement Learning-assisted Garbage Collection to Reduce Long Tail Latency in SSD

Won-Kyung Kang, S. Yoo
{"title":"Dynamic Management of Key States for Reinforcement Learning-assisted Garbage Collection to Reduce Long Tail Latency in SSD","authors":"Won-Kyung Kang, S. Yoo","doi":"10.1145/3195970.3196034","DOIUrl":null,"url":null,"abstract":"Garbage collection (GC) is one of main causes of the long-tail latency problem in storage systems. Long-tail latency due to GC is more than 100 times greater than the average latency at the 99th percentile. Therefore, due to such a long tail latency, real-time systems and quality-critical systems cannot meet the system requirements. In this study, we propose a novel key state management technique of reinforcement learning-assisted garbage collection. The purpose of this study is to dynamically manage key states from a significant number of state candidates. Dynamic management enables us to utilize suitable and frequently recurring key states at a small area cost since the full states do not have to be managed. The experimental results show that the proposed technique reduces by 22–25% the long-tail latency compared to a state-of-the-art scheme with real-world workloads.","PeriodicalId":6491,"journal":{"name":"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)","volume":"76 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3195970.3196034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Garbage collection (GC) is one of main causes of the long-tail latency problem in storage systems. Long-tail latency due to GC is more than 100 times greater than the average latency at the 99th percentile. Therefore, due to such a long tail latency, real-time systems and quality-critical systems cannot meet the system requirements. In this study, we propose a novel key state management technique of reinforcement learning-assisted garbage collection. The purpose of this study is to dynamically manage key states from a significant number of state candidates. Dynamic management enables us to utilize suitable and frequently recurring key states at a small area cost since the full states do not have to be managed. The experimental results show that the proposed technique reduces by 22–25% the long-tail latency compared to a state-of-the-art scheme with real-world workloads.
基于强化学习辅助垃圾回收的关键状态动态管理以减少SSD长尾延迟
垃圾收集(GC)是导致存储系统长尾延迟问题的主要原因之一。由于GC引起的长尾延迟比第99个百分位数的平均延迟大100倍以上。因此,由于这种长尾延迟,实时系统和质量关键型系统无法满足系统需求。在这项研究中,我们提出了一种新的强化学习辅助垃圾收集的关键状态管理技术。本研究的目的是从大量的候选状态中动态管理关键状态。动态管理使我们能够以较小的区域成本利用合适且经常重复出现的关键状态,因为不需要管理完整的状态。实验结果表明,与现实工作负载的最先进方案相比,所提出的技术减少了22-25%的长尾延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信