Initial Value Problem for a Coupled System of Katugampola-Type Fractional Differential Equations

Q4 Mathematics
Y. Arioua
{"title":"Initial Value Problem for a Coupled System of Katugampola-Type Fractional Differential Equations","authors":"Y. Arioua","doi":"10.37622/adsa/14.1.2019.29-47","DOIUrl":null,"url":null,"abstract":"The aim of this work is to study the initial value problem of a coupled system of nonlinear fractional differential equations with Katugampola derivative. Some new existence and uniqueness results of solutions for the given problems are obtained by using the Banach contraction principle, Schauder’s and nonlinear alternative Leray–Schauder fixed point theorems. Several examples are presented to illustrate the usefulness of our main results. AMS Subject Classifications: 34A08, 34A12.","PeriodicalId":36469,"journal":{"name":"Advances in Dynamical Systems and Applications","volume":"124 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Dynamical Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37622/adsa/14.1.2019.29-47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this work is to study the initial value problem of a coupled system of nonlinear fractional differential equations with Katugampola derivative. Some new existence and uniqueness results of solutions for the given problems are obtained by using the Banach contraction principle, Schauder’s and nonlinear alternative Leray–Schauder fixed point theorems. Several examples are presented to illustrate the usefulness of our main results. AMS Subject Classifications: 34A08, 34A12.
一类katugampola型分数阶微分方程耦合系统的初值问题
本文的目的是研究一类具有卡图甘波拉导数的非线性分数阶微分方程耦合系统的初值问题。利用Banach收缩原理、Schauder不动点定理和非线性交替Leray-Schauder不动点定理,得到了给定问题解的一些新的存在唯一性结果。给出了几个例子来说明我们的主要结果的有用性。AMS学科分类:34A08, 34A12。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信