Mask functions for the symbolic modeling of epistasis using genetic programming

R. Urbanowicz, Nate Barney, B. C. White, J. Moore
{"title":"Mask functions for the symbolic modeling of epistasis using genetic programming","authors":"R. Urbanowicz, Nate Barney, B. C. White, J. Moore","doi":"10.1145/1389095.1389154","DOIUrl":null,"url":null,"abstract":"The study of common, complex multifactorial diseases in genetic epidemiology is complicated by nonlinearity in the genotype-to-phenotype mapping relationship that is due, in part, to epistasis or gene-gene interactions. Symobolic discriminant analysis (SDA) is a flexible modeling approach which uses genetic programming (GP) to evolve an optimal predictive model using a predefined collection of mathematical functions, constants, and attributes. This has been shown to be an effective strategy for modeling epistasis. In the present study, we introduce the genetic .mask. as a novel building block which exploits expert knowledge in the form of a pre-constructed relationship between two attributes. The goal of this study was to determine whether the availability of.mask.building blocks improves SDA performance. The results of this study support the idea that pre-processing data improves GP performance.","PeriodicalId":88876,"journal":{"name":"Genetic and Evolutionary Computation Conference : [proceedings]. Genetic and Evolutionary Computation Conference","volume":"2 1","pages":"339-346"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic and Evolutionary Computation Conference : [proceedings]. Genetic and Evolutionary Computation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1389095.1389154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The study of common, complex multifactorial diseases in genetic epidemiology is complicated by nonlinearity in the genotype-to-phenotype mapping relationship that is due, in part, to epistasis or gene-gene interactions. Symobolic discriminant analysis (SDA) is a flexible modeling approach which uses genetic programming (GP) to evolve an optimal predictive model using a predefined collection of mathematical functions, constants, and attributes. This has been shown to be an effective strategy for modeling epistasis. In the present study, we introduce the genetic .mask. as a novel building block which exploits expert knowledge in the form of a pre-constructed relationship between two attributes. The goal of this study was to determine whether the availability of.mask.building blocks improves SDA performance. The results of this study support the idea that pre-processing data improves GP performance.
使用遗传规划的上位性符号建模的掩码函数
遗传流行病学中常见的、复杂的多因素疾病的研究由于基因型-表型作图关系的非线性而变得复杂,这在一定程度上是由于上位性或基因-基因相互作用。符号判别分析(SDA)是一种灵活的建模方法,它使用遗传规划(GP)利用预定义的数学函数、常数和属性集合来进化出最优的预测模型。这已被证明是一个有效的策略建模上位。在本研究中,我们介绍了遗传掩膜。作为一种新的构建块,它以两个属性之间预先构建的关系的形式利用专家知识。本研究的目的是确定.mask.构建块的可用性是否能提高SDA的性能。本研究的结果支持了预处理数据可以提高GP性能的观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信