Research on Smart Grid Users’ Power Consumption Behavior Classification Based on Improved k-Means Algorithm

Yi Sun, Mengyang Jia, Jun Lu, Baogang Zhang, Wan-qing Yang
{"title":"Research on Smart Grid Users’ Power Consumption Behavior Classification Based on Improved k-Means Algorithm","authors":"Yi Sun, Mengyang Jia, Jun Lu, Baogang Zhang, Wan-qing Yang","doi":"10.18178/IJOEE.4.1.6-10","DOIUrl":null,"url":null,"abstract":"Now, the number of smart gird users is increasing. The classification of smart grid users has become the basis of user behavior analysis, load forecasting and demand response. This paper improves the traditional k-means algorithm that is the most common users’ classification algorithm. This improved k-means algorithm uses a new distance calculation method to replace the Euclidean distance. The paper firstly uses two distance calculation methods to process the same set of users load data. Then two different cluster results of smart grid users are acquired. Finally, we uses the cluster validity index Mean Index Adequacy (MIA) to evaluate two results that respectively get from traditional k-means algorithm and improved k-means algorithm. This simulation verifies that the improved kmeans algorithm is better than the traditional k-means algorithm. The improved k-means algorithm not only eliminates the normalization of all samples but also makes the clustering result better. And our improved k-means algorithm can solve the smart grid users’ classification problem better. ","PeriodicalId":13951,"journal":{"name":"International Journal of Electrical Energy","volume":"31 1","pages":"6-10"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18178/IJOEE.4.1.6-10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Now, the number of smart gird users is increasing. The classification of smart grid users has become the basis of user behavior analysis, load forecasting and demand response. This paper improves the traditional k-means algorithm that is the most common users’ classification algorithm. This improved k-means algorithm uses a new distance calculation method to replace the Euclidean distance. The paper firstly uses two distance calculation methods to process the same set of users load data. Then two different cluster results of smart grid users are acquired. Finally, we uses the cluster validity index Mean Index Adequacy (MIA) to evaluate two results that respectively get from traditional k-means algorithm and improved k-means algorithm. This simulation verifies that the improved kmeans algorithm is better than the traditional k-means algorithm. The improved k-means algorithm not only eliminates the normalization of all samples but also makes the clustering result better. And our improved k-means algorithm can solve the smart grid users’ classification problem better. 
基于改进k-Means算法的智能电网用户用电行为分类研究
现在,智能电网用户的数量正在增加。智能电网用户分类已成为用户行为分析、负荷预测和需求响应的基础。本文对最常用的用户分类算法——传统的k-means算法进行了改进。改进的k-means算法采用了一种新的距离计算方法来代替欧氏距离。本文首先采用两种距离计算方法处理同一组用户负荷数据。然后得到两种不同的智能电网用户聚类结果。最后,利用聚类有效性指标均值指数充分性(MIA)对传统k-means算法和改进k-means算法分别得到的结果进行了评价。仿真结果表明,改进的k-means算法优于传统的k-means算法。改进的k-means算法不仅消除了所有样本的归一化,而且使聚类结果更好。改进的k-means算法可以较好地解决智能电网用户的分类问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信