{"title":"Improve the Performance of SONOS Type UV TD Sensors Using IOHAOS with Enhanced UV Transparency ITO Gate","authors":"W. Hsieh, Fun-Cheng Jong, Wei-Ting Tseng","doi":"10.3390/COATINGS11040408","DOIUrl":null,"url":null,"abstract":"This research demonstrates that an indium tin oxide–silicon oxide–hafnium aluminum oxide-silicon oxide–silicon device with enhanced UV transparency ITO gate (hereafter E-IOHAOS) can greatly increase the sensing response performance of a SONOS type ultraviolet radiation total dose (hereafter UV TD) sensor. Post annealing process is used to optimize UV optical transmission and electrical resistivity characterization in ITO film. Via nano-columns (NCols) crystalline transformation of ITO film, UV transparency of ITO film can be enhanced. UV radiation causes the threshold voltage VT of the E-IOHAOS device to increase, and the increase of the VT of E-IOHAOS device is also related to the UV TD. The experimental results show that under UV TD irradiation of 100 mW·s/cm2, ultraviolet light can change the threshold voltage VT of E-IOHAOS to 12.5 V. Moreover, the VT fading rate of ten-years retention on E-IOHAOS is below 10%. The VT change of E-IOHAOS is almost 1.25 times that of poly silicon–aluminum oxide–hafnium aluminum oxide–silicon oxide–silicon with poly silicon gate device (hereafter SAHAOS). The sensing response performance of an E-IOHAOS UV TD sensor is greatly improved by annealed ITO gate.","PeriodicalId":22482,"journal":{"name":"THE Coatings","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"THE Coatings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/COATINGS11040408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This research demonstrates that an indium tin oxide–silicon oxide–hafnium aluminum oxide-silicon oxide–silicon device with enhanced UV transparency ITO gate (hereafter E-IOHAOS) can greatly increase the sensing response performance of a SONOS type ultraviolet radiation total dose (hereafter UV TD) sensor. Post annealing process is used to optimize UV optical transmission and electrical resistivity characterization in ITO film. Via nano-columns (NCols) crystalline transformation of ITO film, UV transparency of ITO film can be enhanced. UV radiation causes the threshold voltage VT of the E-IOHAOS device to increase, and the increase of the VT of E-IOHAOS device is also related to the UV TD. The experimental results show that under UV TD irradiation of 100 mW·s/cm2, ultraviolet light can change the threshold voltage VT of E-IOHAOS to 12.5 V. Moreover, the VT fading rate of ten-years retention on E-IOHAOS is below 10%. The VT change of E-IOHAOS is almost 1.25 times that of poly silicon–aluminum oxide–hafnium aluminum oxide–silicon oxide–silicon with poly silicon gate device (hereafter SAHAOS). The sensing response performance of an E-IOHAOS UV TD sensor is greatly improved by annealed ITO gate.