Long time existence for fully nonlinear NLS with small Cauchy data on the circle

IF 1.2 2区 数学 Q1 MATHEMATICS
R. Feola, Felice Iandoli
{"title":"Long time existence for fully nonlinear NLS with small Cauchy data on the circle","authors":"R. Feola, Felice Iandoli","doi":"10.2422/2036-2145.201811_003","DOIUrl":null,"url":null,"abstract":"In this paper we prove long time existence for a large class of fully nonlinear, reversible and parity preserving Schrodinger equations on the one dimensional torus. We show that for any initial condition even in $x$, regular enough and of size $\\varepsilon$ sufficiently small, the lifespan of the solution is of order $\\varepsilon^{-N}$ for any $N\\in\\mathbb{N}$ if some non resonance conditions are fulfilled. After a paralinearization of the equation we perform several para-differential changes of variables which diagonalize the system up to a very regularizing term. Once achieved the diagonalization, we construct modified energies for the solution by means of Birkhoff normal forms techniques.","PeriodicalId":50966,"journal":{"name":"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze","volume":"29 1","pages":"1"},"PeriodicalIF":1.2000,"publicationDate":"2018-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2422/2036-2145.201811_003","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 41

Abstract

In this paper we prove long time existence for a large class of fully nonlinear, reversible and parity preserving Schrodinger equations on the one dimensional torus. We show that for any initial condition even in $x$, regular enough and of size $\varepsilon$ sufficiently small, the lifespan of the solution is of order $\varepsilon^{-N}$ for any $N\in\mathbb{N}$ if some non resonance conditions are fulfilled. After a paralinearization of the equation we perform several para-differential changes of variables which diagonalize the system up to a very regularizing term. Once achieved the diagonalization, we construct modified energies for the solution by means of Birkhoff normal forms techniques.
圆上柯西数据小的全非线性NLS的长时间存在性
本文证明了一维环面上一大类完全非线性可逆保宇称薛定谔方程的长时间存在性。我们证明了对于任何初始条件,即使在$x$中,足够规则且尺寸$\varepsilon$足够小,对于\mathbb{N}$中的任意$N $,如果满足某些非共振条件,解的寿命为$\varepsilon^{-N}$阶。在对方程进行并行化之后,我们对变量进行了几次准微分变化,使系统对角化,直到一个非常正则化的项。在实现对角化后,利用Birkhoff范式技术构造解的修正能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
90
审稿时长
>12 weeks
期刊介绍: The Annals of the Normale Superiore di Pisa, Science Class, publishes papers that contribute to the development of Mathematics both from the theoretical and the applied point of view. Research papers or papers of expository type are considered for publication. The Annals of the Normale Scuola di Pisa - Science Class is published quarterly Soft cover, 17x24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信