{"title":"Relationship between Serum Levels of Oxidative Stress Markers and Metabolic Syndrome Components in PCOS Women","authors":"K. Lakshmi, S. S. Malini","doi":"10.18311/jer/2023/33508","DOIUrl":null,"url":null,"abstract":"Background: Polycystic Ovarian Syndrome (PCOS) is a common endocrinological problem that leads to infertility in reproductive age. It is strongly associated with oxidative stress, which increases the risk of Metabolic Syndrome (Met-S) in women. This study aimed to evaluate the relationship between oxidative stress markers and metabolic syndrome parameters in PCOS women. Methods: In this cross-sectional study, we included age-matched 100 control and 150 PCOS (according to Rotterdam criteria). Anthropometric measurements were obtained from each subject. Lipid profile, Fasting Plasma Glucose (FPG), and insulin were determined. Serum Malondialdehyde (MDA), Nitric Oxide (NO), and Reactive Oxygen Species (ROS) levels are pro-oxidant indicators, while for antioxidant activities, Superoxide Dismutase (SOD), Catalase (CAT), Glutathione (GSH), Vitamin-C (Vit C), and Total Antioxidant Capacity (TAC) activity were measured by spectrophotometry. Results: In the PCOS group the SOD, CAT, GSH, Vit C, and TAC activity were significantly low, whereas NO, ROS, and MDA were significantly high (p < 0.05). In the PCOS group, the pro-oxidant MDA showed a negative correlation with HDL and a positive correlation with DBP. The antioxidants SOD and CAT showed a negative correlation with fasting blood glucose and triglycerides. Conclusion: The metabolic syndrome components of PCOS can induce oxidative stress, which is evidenced by a decrease in antioxidant defence mechanisms. It is probably because oxidative stress itself is the consequence of PCOS, more so with Met-S which increases the pro-oxidant state and decreases the anti-oxidant capacity in women.","PeriodicalId":15664,"journal":{"name":"Journal of Endocrinology and Reproduction","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Endocrinology and Reproduction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18311/jer/2023/33508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Polycystic Ovarian Syndrome (PCOS) is a common endocrinological problem that leads to infertility in reproductive age. It is strongly associated with oxidative stress, which increases the risk of Metabolic Syndrome (Met-S) in women. This study aimed to evaluate the relationship between oxidative stress markers and metabolic syndrome parameters in PCOS women. Methods: In this cross-sectional study, we included age-matched 100 control and 150 PCOS (according to Rotterdam criteria). Anthropometric measurements were obtained from each subject. Lipid profile, Fasting Plasma Glucose (FPG), and insulin were determined. Serum Malondialdehyde (MDA), Nitric Oxide (NO), and Reactive Oxygen Species (ROS) levels are pro-oxidant indicators, while for antioxidant activities, Superoxide Dismutase (SOD), Catalase (CAT), Glutathione (GSH), Vitamin-C (Vit C), and Total Antioxidant Capacity (TAC) activity were measured by spectrophotometry. Results: In the PCOS group the SOD, CAT, GSH, Vit C, and TAC activity were significantly low, whereas NO, ROS, and MDA were significantly high (p < 0.05). In the PCOS group, the pro-oxidant MDA showed a negative correlation with HDL and a positive correlation with DBP. The antioxidants SOD and CAT showed a negative correlation with fasting blood glucose and triglycerides. Conclusion: The metabolic syndrome components of PCOS can induce oxidative stress, which is evidenced by a decrease in antioxidant defence mechanisms. It is probably because oxidative stress itself is the consequence of PCOS, more so with Met-S which increases the pro-oxidant state and decreases the anti-oxidant capacity in women.