Efficient and Fast Analysis for Detecting High Order Gene-by-Gene Interactions in a Genome-Wide Association Study

Sohee Oh, Jaehoon Lee, Min-Seok Kwon, Kyunga Kim, T. Park
{"title":"Efficient and Fast Analysis for Detecting High Order Gene-by-Gene Interactions in a Genome-Wide Association Study","authors":"Sohee Oh, Jaehoon Lee, Min-Seok Kwon, Kyunga Kim, T. Park","doi":"10.1109/BIBM.2011.103","DOIUrl":null,"url":null,"abstract":"Most common complex traits are affected by multiple genes and/or environmental factors. To understand genetic architecture of complex traits, the investigation of gene-gene and gene-environment interactions can be essential. However, conducting gene-gene interaction using genome-wide data requires exploring a huge search space and suffers from a computation burden due to high dimensionality of genetic data. To identify gene-gene interaction more efficiently, we propose a gene-based reduction method which first summarizes the gene effect by combining multiple single nucleotide polymorphism (SNP) and then performs the gene-gene interaction via the summarized gene effect. By reducing the search space from SNPs to gene, our gene-based method becomes efficient and fast for identifying gene-gene interaction in genome wide association studies. The gene-based reduction method is illustrated by hypertension data from a Korean population.","PeriodicalId":6345,"journal":{"name":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","volume":"49 1","pages":"83-88"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2011.103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Most common complex traits are affected by multiple genes and/or environmental factors. To understand genetic architecture of complex traits, the investigation of gene-gene and gene-environment interactions can be essential. However, conducting gene-gene interaction using genome-wide data requires exploring a huge search space and suffers from a computation burden due to high dimensionality of genetic data. To identify gene-gene interaction more efficiently, we propose a gene-based reduction method which first summarizes the gene effect by combining multiple single nucleotide polymorphism (SNP) and then performs the gene-gene interaction via the summarized gene effect. By reducing the search space from SNPs to gene, our gene-based method becomes efficient and fast for identifying gene-gene interaction in genome wide association studies. The gene-based reduction method is illustrated by hypertension data from a Korean population.
在全基因组关联研究中检测高阶基因间相互作用的高效快速分析
大多数常见的复杂性状受到多种基因和/或环境因素的影响。为了理解复杂性状的遗传结构,基因-基因和基因-环境相互作用的研究是必不可少的。然而,利用全基因组数据进行基因-基因相互作用需要探索巨大的搜索空间,并且由于遗传数据的高维,计算负担很大。为了更有效地识别基因-基因相互作用,我们提出了一种基于基因的还原方法,该方法首先通过组合多个单核苷酸多态性(SNP)来总结基因效应,然后通过总结的基因效应进行基因-基因相互作用。通过减少从SNPs到基因的搜索空间,我们的基于基因的方法在全基因组关联研究中能够高效、快速地识别基因-基因相互作用。以基因为基础的减少方法由韩国人群的高血压数据说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信