Twistor holomorphic affine surfaces and projective invariants

Q4 Mathematics
Kazuyuki Hasegawa
{"title":"Twistor holomorphic affine surfaces and projective invariants","authors":"Kazuyuki Hasegawa","doi":"10.55937/sut/1424794189","DOIUrl":null,"url":null,"abstract":"We study affine immersions with twistor lifts. Using a decomposition of a connection, we obtain several projective invariants for such affine immersions. In particular, affine immersions with holomorphic twistor lifts are considered. We can show the property that an affine immersion has holomorphic twistor lifts is invariant under projective transformations and characterize immersions with holomorphic twistor lifts by vanishing of some of projective invariants. In the case of compact affine surfaces with holomorphic twistor lifts, we see a quantization phenomenon for one of the projective invariants which we obtain. Moreover, we prove that a real analytic twistor holomorphic affine surface with the symmetric Ricci tensor with respect to both complex structures is totally geodesic or totally umbilic.","PeriodicalId":38708,"journal":{"name":"SUT Journal of Mathematics","volume":"751 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SUT Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55937/sut/1424794189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

Abstract

We study affine immersions with twistor lifts. Using a decomposition of a connection, we obtain several projective invariants for such affine immersions. In particular, affine immersions with holomorphic twistor lifts are considered. We can show the property that an affine immersion has holomorphic twistor lifts is invariant under projective transformations and characterize immersions with holomorphic twistor lifts by vanishing of some of projective invariants. In the case of compact affine surfaces with holomorphic twistor lifts, we see a quantization phenomenon for one of the projective invariants which we obtain. Moreover, we prove that a real analytic twistor holomorphic affine surface with the symmetric Ricci tensor with respect to both complex structures is totally geodesic or totally umbilic.
扭转全纯仿射曲面与射影不变量
我们研究具有扭转提升的仿射浸入。利用连接的分解,我们得到了这类仿射浸入的几个射影不变量。特别地,考虑了具有全纯扭转或提升的仿射浸入。我们可以证明仿射浸没具有全纯扭转升的性质,并通过一些射影不变量的消失来表征具有全纯扭转升的浸没。对于具有全纯扭升的紧仿射曲面,我们得到了其中一个射影不变量的量化现象。此外,我们还证明了具有对称Ricci张量的实解析扭转或全纯仿射曲面是完全测地线或完全脐形的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
SUT Journal of Mathematics
SUT Journal of Mathematics Mathematics-Mathematics (all)
CiteScore
0.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信