An effective adaptive algorithm for linear fractional dynamical systems

IF 0.9 Q3 COMPUTER SCIENCE, THEORY & METHODS
W. Bu, Min Qu
{"title":"An effective adaptive algorithm for linear fractional dynamical systems","authors":"W. Bu, Min Qu","doi":"10.1142/s1793962324500053","DOIUrl":null,"url":null,"abstract":"This study proposes a time-stepping [Formula: see text] scheme to approximate the linear fractional dynamical systems based on nonuniform mesh. The developed numerical scheme is unconditionally stable, and exhibits second-order accuracy when the suitable graded mesh is used. A posteriori error estimation is derived for the obtained numerical scheme and the corresponding adaptive algorithm is devised. Finally, two numerical examples are provided to demonstrate the effectiveness of our approach and verify the theoretical results.","PeriodicalId":45889,"journal":{"name":"International Journal of Modeling Simulation and Scientific Computing","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modeling Simulation and Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793962324500053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

This study proposes a time-stepping [Formula: see text] scheme to approximate the linear fractional dynamical systems based on nonuniform mesh. The developed numerical scheme is unconditionally stable, and exhibits second-order accuracy when the suitable graded mesh is used. A posteriori error estimation is derived for the obtained numerical scheme and the corresponding adaptive algorithm is devised. Finally, two numerical examples are provided to demonstrate the effectiveness of our approach and verify the theoretical results.
线性分数阶动力系统的一种有效自适应算法
本文提出了一种基于非均匀网格的线性分数阶动力系统近似的时间步进[公式:见文本]方案。所建立的数值格式是无条件稳定的,并且在采用合适的分级网格时具有二阶精度。对得到的数值格式进行了后验误差估计,并设计了相应的自适应算法。最后,给出了两个数值算例,验证了本文方法的有效性和理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
16.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信