Improve Performance of Fine-tuning Language Models with Prompting

Pub Date : 2023-01-01 DOI:10.36244/icj.2023.5.10
Noémi Ligeti-Nagy, Zijian Győző Yang
{"title":"Improve Performance of Fine-tuning Language Models with Prompting","authors":"Noémi Ligeti-Nagy, Zijian Győző Yang","doi":"10.36244/icj.2023.5.10","DOIUrl":null,"url":null,"abstract":"This paper explores the effectiveness of prompt programming in the fine-tuning process of a Hungarian language model. The study builds on the prior success of prompt engineering in natural language processing tasks and employs the prompting method to enhance the fine-tuning performance of a huBERT model on several benchmark datasets of HuLU. The experimentation involves testing 45 prompt combinations for the HuCoPA dataset and 15 prompt variations for the HuRTE and HuWNLI datasets. The findings reveal that the addition of an instructional text consistently produces the best results across all winning cases, and that the [CLS] token produces the best results in the separator token experiments. The most significant enhancement was observed in the HuWNLI dataset, with an increase in accuracy from 65% to 85%. These results demon- strate that the addition of instruct text is crucial and sufficient in enabling the language model to effectively interpret and solve the Winograd Schemata problem. These results showcase the potential of prompt programming in enhancing the performance of language models in fine-tuning tasks, and highlight the importance of incorporating task-specific instructions to improve model interpretability and accuracy.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36244/icj.2023.5.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper explores the effectiveness of prompt programming in the fine-tuning process of a Hungarian language model. The study builds on the prior success of prompt engineering in natural language processing tasks and employs the prompting method to enhance the fine-tuning performance of a huBERT model on several benchmark datasets of HuLU. The experimentation involves testing 45 prompt combinations for the HuCoPA dataset and 15 prompt variations for the HuRTE and HuWNLI datasets. The findings reveal that the addition of an instructional text consistently produces the best results across all winning cases, and that the [CLS] token produces the best results in the separator token experiments. The most significant enhancement was observed in the HuWNLI dataset, with an increase in accuracy from 65% to 85%. These results demon- strate that the addition of instruct text is crucial and sufficient in enabling the language model to effectively interpret and solve the Winograd Schemata problem. These results showcase the potential of prompt programming in enhancing the performance of language models in fine-tuning tasks, and highlight the importance of incorporating task-specific instructions to improve model interpretability and accuracy.
分享
查看原文
使用提示提高微调语言模型的性能
本文探讨了提示编程在匈牙利语模型微调过程中的有效性。本研究建立在提示工程在自然语言处理任务中先前成功的基础上,并采用提示方法在HuLU的几个基准数据集上增强huBERT模型的微调性能。实验包括测试HuCoPA数据集的45个提示组合,以及HuRTE和HuWNLI数据集的15个提示变体。研究结果表明,添加教学文本在所有获胜案例中始终产生最佳结果,并且[CLS]令牌在分隔令牌实验中产生最佳结果。在HuWNLI数据集中观察到最显著的增强,准确度从65%提高到85%。这些结果表明,指令文本的加入对于语言模型有效地解释和解决Winograd模式问题是至关重要和充分的。这些结果展示了提示编程在提高语言模型在微调任务中的性能方面的潜力,并强调了合并任务特定指令以提高模型可解释性和准确性的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信