GPU Accelerated Fuzzy C-Means (FCM) Color Image Segmentation

Mutaqin Akbar, A. Witanti, I. Susilawati
{"title":"GPU Accelerated Fuzzy C-Means (FCM) Color Image Segmentation","authors":"Mutaqin Akbar, A. Witanti, I. Susilawati","doi":"10.28989/compiler.v8i2.455","DOIUrl":null,"url":null,"abstract":"In this paper, computational acceleration of color image segmentation using fuzzy c-means (FCM) algorithm has been presented. The color image is first converted from the Red Green Blue (RGB) color space to the YUV color space. Then, the luma (Y) information values are grouped according to the desired number of clusters using the FCM algorithm. The FCM algorithm is implemented on a Graphical Processing Unit (GPU) using the Compute Unified Device Library (CUDA) library which is developed by NVidia to speed up the computing time. Images used in this research are red blood cell images, geometry images and leaf images. The results of segmented images processed using GPU were seen identic to the results of segmented images processed using the Central Processing Unit (CPU). The computational time of the FCM algorithm can be accelerated by speed-up to 5,628 times faster and the average speed-up of all simulations done is 5,517 times faster.","PeriodicalId":93739,"journal":{"name":"Compiler construction : ... International Conference, CC ... : proceedings. CC (Conference)","volume":"87 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compiler construction : ... International Conference, CC ... : proceedings. CC (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28989/compiler.v8i2.455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, computational acceleration of color image segmentation using fuzzy c-means (FCM) algorithm has been presented. The color image is first converted from the Red Green Blue (RGB) color space to the YUV color space. Then, the luma (Y) information values are grouped according to the desired number of clusters using the FCM algorithm. The FCM algorithm is implemented on a Graphical Processing Unit (GPU) using the Compute Unified Device Library (CUDA) library which is developed by NVidia to speed up the computing time. Images used in this research are red blood cell images, geometry images and leaf images. The results of segmented images processed using GPU were seen identic to the results of segmented images processed using the Central Processing Unit (CPU). The computational time of the FCM algorithm can be accelerated by speed-up to 5,628 times faster and the average speed-up of all simulations done is 5,517 times faster.
GPU加速模糊c均值(FCM)彩色图像分割
本文提出了一种基于模糊c均值(FCM)算法的彩色图像分割计算加速算法。彩色图像首先从红绿蓝(RGB)色彩空间转换为YUV色彩空间。然后,使用FCM算法将luma (Y)信息值根据所需的聚类数量进行分组。FCM算法在图形处理单元(GPU)上实现,使用NVidia开发的计算统一设备库(CUDA)库来加快计算时间。本研究使用的图像有红细胞图像、几何图像和叶片图像。使用GPU处理的图像分割结果与使用中央处理器(CPU)处理的图像分割结果一致。通过加速,FCM算法的计算时间提高了5628倍,所有模拟的平均加速速度提高了5517倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信