Effects of Nb and V microalloying on the thermoplasticity of new martensitic low-density steels

Ce Sun, Xiaoqing Li, Fanghui Guo, Junru Li, Lianjun Cheng, P. Zhang
{"title":"Effects of Nb and V microalloying on the thermoplasticity of new martensitic low-density steels","authors":"Ce Sun, Xiaoqing Li, Fanghui Guo, Junru Li, Lianjun Cheng, P. Zhang","doi":"10.1590/1517-7076-rmat-2023-0214","DOIUrl":null,"url":null,"abstract":"By performing tensile tests in the temperature range of 800°C to 1200°C, the thermoplastic behavior of microal-loyed and unmicroalloyed new martensitic low-density steels were investigated, and the mechanism of the effect of Nb and V microalloying on the thermoplasticity was revealed. The results showed that both microalloyed and unmicroalloyed steels have good thermoplasticity and the plasticity increased with increasing deformation temperature. The microalloyed steels above 1000°C could have their high-temperature plasticity significantly enhanced by Nb, V microalloying, while the microalloyed steels at or below 1000°C could have their plasticity reduced. When the deformation temperature exceeds 1000°C, complete recrystallization occurs in both microal-loyed and unmicroalloyed steels. The Nb, V microalloys were able to refine the recrystallized grains, which could obtain a stronger resistance to crack expansion and give the microalloyed steels better high-temperature plasticity. When the deformation temperature at or below 1000°C, the unmicroalloyed steel exhibited significant recrystallization. The presence of numerous small-sized NbC precipitation phases, abundant in the microal-loyed steel, hindered the recrystallization. This made dynamic recrystallization of microalloyed steels almost non-existent when deformation occurred at lower temperatures, which lead to lower plasticity compared to the unmicroalloyed steel.","PeriodicalId":18246,"journal":{"name":"Matéria (Rio de Janeiro)","volume":"749 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matéria (Rio de Janeiro)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/1517-7076-rmat-2023-0214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

By performing tensile tests in the temperature range of 800°C to 1200°C, the thermoplastic behavior of microal-loyed and unmicroalloyed new martensitic low-density steels were investigated, and the mechanism of the effect of Nb and V microalloying on the thermoplasticity was revealed. The results showed that both microalloyed and unmicroalloyed steels have good thermoplasticity and the plasticity increased with increasing deformation temperature. The microalloyed steels above 1000°C could have their high-temperature plasticity significantly enhanced by Nb, V microalloying, while the microalloyed steels at or below 1000°C could have their plasticity reduced. When the deformation temperature exceeds 1000°C, complete recrystallization occurs in both microal-loyed and unmicroalloyed steels. The Nb, V microalloys were able to refine the recrystallized grains, which could obtain a stronger resistance to crack expansion and give the microalloyed steels better high-temperature plasticity. When the deformation temperature at or below 1000°C, the unmicroalloyed steel exhibited significant recrystallization. The presence of numerous small-sized NbC precipitation phases, abundant in the microal-loyed steel, hindered the recrystallization. This made dynamic recrystallization of microalloyed steels almost non-existent when deformation occurred at lower temperatures, which lead to lower plasticity compared to the unmicroalloyed steel.
Nb和V微合金化对新型马氏体低密度钢热塑性的影响
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信