Use of Autocorrelation-Like Function to Improve the Performance of Linear-Prediction Parameter Estimators

M. Fedrigo, G. Esposito, S. Cattarinussi, P. Viglino, F. Fogolari
{"title":"Use of Autocorrelation-Like Function to Improve the Performance of Linear-Prediction Parameter Estimators","authors":"M. Fedrigo,&nbsp;G. Esposito,&nbsp;S. Cattarinussi,&nbsp;P. Viglino,&nbsp;F. Fogolari","doi":"10.1006/jmra.1996.0148","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, a novel approach to the usage of an autocorrelation function in order to improve signal-to-noise ratio (SNR) is presented. This method avoids the usual problems entailed by standard autocorrelation function-based approaches to nonstationary signals such as NMR signals. The Cadzow autocorrelation matrix approach to transient data is often not suitable for time-domain signal analysis; in fact, it does not maintain the Hankel structure of the prediction matrix, which is mandatory for many linear-prediction (LP) applications. The approach presented here conserves the Hankel structure of the prediction matrix and, moreover, does not change the frequency and linewidth parameters of the signal components. Furthermore, the proposed autocorrelation-like function permits a weighting of the individual components according to their<em>T</em><sub>2</sub>decay constant. This property opens new possibilities for retrieving signal parameters by LP procedures. These new procedures are applied to simulated 2D signals and 1D NMR measurements of phosphorus metabolites in frog muscle.</p></div>","PeriodicalId":16165,"journal":{"name":"Journal of Magnetic Resonance, Series A","volume":"121 2","pages":"Pages 97-107"},"PeriodicalIF":0.0000,"publicationDate":"1996-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1006/jmra.1996.0148","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetic Resonance, Series A","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1064185896901485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this work, a novel approach to the usage of an autocorrelation function in order to improve signal-to-noise ratio (SNR) is presented. This method avoids the usual problems entailed by standard autocorrelation function-based approaches to nonstationary signals such as NMR signals. The Cadzow autocorrelation matrix approach to transient data is often not suitable for time-domain signal analysis; in fact, it does not maintain the Hankel structure of the prediction matrix, which is mandatory for many linear-prediction (LP) applications. The approach presented here conserves the Hankel structure of the prediction matrix and, moreover, does not change the frequency and linewidth parameters of the signal components. Furthermore, the proposed autocorrelation-like function permits a weighting of the individual components according to theirT2decay constant. This property opens new possibilities for retrieving signal parameters by LP procedures. These new procedures are applied to simulated 2D signals and 1D NMR measurements of phosphorus metabolites in frog muscle.

利用类自相关函数提高线性预测参数估计器的性能
在这项工作中,提出了一种使用自相关函数来提高信噪比(SNR)的新方法。该方法避免了标准的基于自相关函数的方法处理非平稳信号(如核磁共振信号)所带来的问题。瞬态数据的Cadzow自相关矩阵法通常不适用于时域信号分析;事实上,它不保持预测矩阵的汉克尔结构,而这对于许多线性预测(LP)应用是必需的。该方法既保留了预测矩阵的汉克尔结构,又不改变信号分量的频率和线宽参数。此外,所提出的类自相关函数允许根据它们的2衰变常数对各个分量进行加权。此属性为通过LP过程检索信号参数提供了新的可能性。这些新程序应用于模拟二维信号和1D核磁共振测量的磷代谢产物在青蛙肌肉。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信