{"title":"Applying Pay-Burst-Only-Once Principle for Periodic Power Management in Hard Real-Time Pipelined Multiprocessor Systems","authors":"Gang Chen, Kai Huang, C. Buckl, A. Knoll","doi":"10.1145/2699865","DOIUrl":null,"url":null,"abstract":"Pipelined computing is a promising paradigm for embedded system design. Designing a power management policy to reduce the power consumption of a pipelined system with nondeterministic workload is, however, nontrivial. In this article, we study the problem of energy minimization for coarse-grained pipelined systems under hard real-time constraints and propose new approaches based on an inverse use of the pay-burst-only-once principle. We formulate the problem by means of the resource demands of individual pipeline stages and propose two new approaches, a quadratic programming-based approach and fast heuristic, to solve the problem. In the quadratic programming approach, the problem is transformed into a standard quadratic programming with box constraint and then solved by a standard quadratic programming solver. Observing the problem is NP-hard, the fast heuristic is designed to solve the problem more efficiently. Our approach is scalable with respect to the numbers of pipeline stages. Simulation results using real-life applications are presented to demonstrate the effectiveness of our methods.","PeriodicalId":7063,"journal":{"name":"ACM Trans. Design Autom. Electr. Syst.","volume":"70 1","pages":"26:1-26:27"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Design Autom. Electr. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2699865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Pipelined computing is a promising paradigm for embedded system design. Designing a power management policy to reduce the power consumption of a pipelined system with nondeterministic workload is, however, nontrivial. In this article, we study the problem of energy minimization for coarse-grained pipelined systems under hard real-time constraints and propose new approaches based on an inverse use of the pay-burst-only-once principle. We formulate the problem by means of the resource demands of individual pipeline stages and propose two new approaches, a quadratic programming-based approach and fast heuristic, to solve the problem. In the quadratic programming approach, the problem is transformed into a standard quadratic programming with box constraint and then solved by a standard quadratic programming solver. Observing the problem is NP-hard, the fast heuristic is designed to solve the problem more efficiently. Our approach is scalable with respect to the numbers of pipeline stages. Simulation results using real-life applications are presented to demonstrate the effectiveness of our methods.