Extrusion foaming of multiphasic polyethylene/ethylene-vinyl acetate copolymer/carbon nanotube mixtures: Tailoring foam properties by selective localization of nanoparticles

IF 3.2 4区 工程技术 Q2 CHEMISTRY, APPLIED
Reza Ghanemi, Seyed Rasoul Mousavi, Sirwan Qewami, Ali Sharifi, As’ad Zandi, Jamshid Mohammadi-Roshandeh, H. Khonakdar, Farkhondeh Hemmati
{"title":"Extrusion foaming of multiphasic polyethylene/ethylene-vinyl acetate copolymer/carbon nanotube mixtures: Tailoring foam properties by selective localization of nanoparticles","authors":"Reza Ghanemi, Seyed Rasoul Mousavi, Sirwan Qewami, Ali Sharifi, As’ad Zandi, Jamshid Mohammadi-Roshandeh, H. Khonakdar, Farkhondeh Hemmati","doi":"10.1177/0021955x231177811","DOIUrl":null,"url":null,"abstract":"Semi-conductive foams based on low-density polyethylene/ethylene-vinyl acetate copolymer (LDPE/EVA) blends in the presence of carbon nanotubes (CNTs) were prepared using a twin-screw extrusion process. The effects of CNTs content and localization state in the binary mixture on the physical and structural properties of LDPE/EVA/CNT foams were investigated. The results confirmed that the void fraction, cell density, bubble size and cell size distribution of foams are optimal against CNT loading. The lightest LDPE/EVA/CNT foam was obtained by the CNT localization in the LDPE matrix. This foam containing 2.5 phr of CNT had smaller cells and more uniform cell size comparing to the pure blend foam. The cell density of this foam was 1.598 × 106 cells/cm3, which is much larger than that for the blend foam, 8.64 × 105 cells/cm3. However, the CNT localization state in the dispersed EVA domains resulted in lower void fractions and cell densities comparing with the LDPE/EVA blend foam. The findings clarify the profound impact of the nanofiller localization state on the foam properties of the binary polymeric systems. Light semiconductive LDPE/EVA foams with small cells, uniform cell size and high cell densities were achieved by localizing and dispersing the CNT nanoparticles in the LDPE matrix phase.","PeriodicalId":15236,"journal":{"name":"Journal of Cellular Plastics","volume":"107 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Plastics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/0021955x231177811","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Semi-conductive foams based on low-density polyethylene/ethylene-vinyl acetate copolymer (LDPE/EVA) blends in the presence of carbon nanotubes (CNTs) were prepared using a twin-screw extrusion process. The effects of CNTs content and localization state in the binary mixture on the physical and structural properties of LDPE/EVA/CNT foams were investigated. The results confirmed that the void fraction, cell density, bubble size and cell size distribution of foams are optimal against CNT loading. The lightest LDPE/EVA/CNT foam was obtained by the CNT localization in the LDPE matrix. This foam containing 2.5 phr of CNT had smaller cells and more uniform cell size comparing to the pure blend foam. The cell density of this foam was 1.598 × 106 cells/cm3, which is much larger than that for the blend foam, 8.64 × 105 cells/cm3. However, the CNT localization state in the dispersed EVA domains resulted in lower void fractions and cell densities comparing with the LDPE/EVA blend foam. The findings clarify the profound impact of the nanofiller localization state on the foam properties of the binary polymeric systems. Light semiconductive LDPE/EVA foams with small cells, uniform cell size and high cell densities were achieved by localizing and dispersing the CNT nanoparticles in the LDPE matrix phase.
多相聚乙烯/乙烯-醋酸乙烯共聚物/碳纳米管混合物的挤出发泡:通过纳米颗粒的选择性定位来定制泡沫特性
采用双螺杆挤出法制备了低密度聚乙烯/乙烯-醋酸乙烯共聚物(LDPE/EVA)共混物中含有碳纳米管的半导电泡沫材料。研究了二元混合物中CNTs含量和局部化状态对LDPE/EVA/CNT泡沫材料物理结构性能的影响。结果表明,在碳纳米管负载下,泡沫的孔隙率、孔密度、气泡大小和孔尺寸分布是最优的。通过碳纳米管在LDPE基体中的定位,获得了最轻的LDPE/EVA/CNT泡沫材料。与纯混合泡沫相比,含有2.5 phr碳纳米管的泡沫具有更小的细胞和更均匀的细胞尺寸。该泡沫的孔密度为1.598 × 106孔/cm3,远高于共混泡沫的8.64 × 105孔/cm3。然而,与LDPE/EVA共混泡沫相比,碳纳米管在分散的EVA域中的定位状态导致空隙分数和细胞密度降低。研究结果阐明了纳米填料的局部化状态对二元聚合物体系泡沫性能的深远影响。通过在LDPE基体相中定位和分散碳纳米管纳米颗粒,获得了具有小细胞、均匀尺寸和高密度的轻型半导体LDPE/EVA泡沫。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cellular Plastics
Journal of Cellular Plastics 工程技术-高分子科学
CiteScore
5.00
自引率
16.00%
发文量
19
审稿时长
3 months
期刊介绍: The Journal of Cellular Plastics is a fully peer reviewed international journal that publishes original research and review articles covering the latest advances in foamed plastics technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信