((Contractible Edge of Eulerian Graph- Regular ))

A. A. Sangoor
{"title":"((Contractible Edge of Eulerian Graph- Regular ))","authors":"A. A. Sangoor","doi":"10.32792/utq/utj/vol11/4/3","DOIUrl":null,"url":null,"abstract":"In this paper define the contractible edge eulerian graph that, let  is a class of  Eulerian graphs , the edge e in   is called contractible edge eulerian graph if . The necessary  conditions for Eulerian graphs to have contractible edge eulerian have been introduced, further, the even and odd contractible edge eulerian graph have been studied , we also define the contractible edge eulerian graph class,  the  edge e in G is satisfied property contraction is called contractible edge eulerian if . Tutte [7] proved every 3-connected graph non isomorphic to  have 3-contractible and proved every 3-connected graph on more than four vertices contains an edge whose contraction yield a new 3-connected graph [7]. We proved graph G is eulerian graph has contractible edge if non isomorphic to . How over every 4-connected graph on at least seven vertices can be reduced to smaller 4-connected graph by contraction one or two edge subsequently [7]. Also we discussed the graph G is eulerian on at least seven vertices can be contraction and saved the properties of eulerian graph.  Let  be a regular graph and eulerian graph, the edges e in   is called contractible regular-eulerian graph if  is regular-eulerian grah, We discussed relation contraction of eulerian-regular graph then  has contractible if  if  then  has not contractible regular-eulerian.","PeriodicalId":23465,"journal":{"name":"University of Thi-Qar Journal","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"University of Thi-Qar Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32792/utq/utj/vol11/4/3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper define the contractible edge eulerian graph that, let  is a class of  Eulerian graphs , the edge e in   is called contractible edge eulerian graph if . The necessary  conditions for Eulerian graphs to have contractible edge eulerian have been introduced, further, the even and odd contractible edge eulerian graph have been studied , we also define the contractible edge eulerian graph class,  the  edge e in G is satisfied property contraction is called contractible edge eulerian if . Tutte [7] proved every 3-connected graph non isomorphic to  have 3-contractible and proved every 3-connected graph on more than four vertices contains an edge whose contraction yield a new 3-connected graph [7]. We proved graph G is eulerian graph has contractible edge if non isomorphic to . How over every 4-connected graph on at least seven vertices can be reduced to smaller 4-connected graph by contraction one or two edge subsequently [7]. Also we discussed the graph G is eulerian on at least seven vertices can be contraction and saved the properties of eulerian graph.  Let  be a regular graph and eulerian graph, the edges e in   is called contractible regular-eulerian graph if  is regular-eulerian grah, We discussed relation contraction of eulerian-regular graph then  has contractible if  if  then  has not contractible regular-eulerian.
((欧拉图的可收缩边-正则))
本文定义了可缩边欧拉图,设为一类欧拉图,其中的边e称为可缩边欧拉图。引入了欧拉图具有可缩边欧拉图的必要条件,进一步研究了奇偶可缩边欧拉图,并定义了可缩边欧拉图类,其中G中的边e满足缩边性质,称为可缩边欧拉图。Tutte[7]证明了每一个非同构的3连通图都具有3可缩性,并证明了每一个超过4个顶点的3连通图都包含一条边,该边的收缩产生一个新的3连通图[7]。证明了图G是非同构的欧拉图具有可收缩边。如何在每个至少有7个顶点的4连通图上,通过随后收缩一条或两条边,将其缩减为更小的4连通图[7]。同时讨论了图G是欧拉图,在至少7个顶点上可以收缩,保存了欧拉图的性质。设一个正则图和欧拉图,如果是正则欧拉图,则称其边e为可收缩正则欧拉图,讨论了欧拉图的收缩关系,如果有可收缩正则欧拉图,则无可收缩正则欧拉图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信