Making Ends Meet

Q3 Arts and Humanities
T. S. Ellis
{"title":"Making Ends Meet","authors":"T. S. Ellis","doi":"10.4324/9780429501180-4","DOIUrl":null,"url":null,"abstract":"Conjugated Polymers on the Scale that Roll-to-Roll Processing Demands DTU Orbit (12/12/2018) Making Ends Meet: Flow Synthesis as the Answer to Reproducible High-Performance Conjugated Polymers on the Scale that Roll-to-Roll Processing Demands Continuous flow methods are employed for the controlled polymerization of the roll-to-roll (R2R) compatible polymer PBDTTTz-4 including optimization and upscaling experiments. The polymerization rate and materials’ quality can be increased significantly with the continuous fl ow method where reaction times down to 10 min afforded PBDTTTz-4 with high molecular weight and a constant quality. The flow method enables full control of the molecular weight via tuning of the flow speed, catalyst loading, and temperature and avoids variation in materials’ quality associated with conventional batch synthesis. Upscaling from 300 mg batch synthesis to 10 g flow synthesis affords PBDTTTz-4 with a production rate of up to 120 g day −1 for a very simple in-house build flow reactor. An average power conversion efficiency (PCE) of 3.5% is achieved on a small scale (1 cm 2 ) and an average PCE of 3.3% is achieved on a large scale (29 cm2 ). This shows that small device efficiencies can be scaled when using full R2R processing of flexible and encapsulated carbon-based modules without the use of vacuum, indium-tin-oxide, or silver, with the best achieving a PCE of 3.8% PCE.","PeriodicalId":35040,"journal":{"name":"Year''s Work in Critical and Cultural Theory","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Year''s Work in Critical and Cultural Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4324/9780429501180-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

Abstract

Conjugated Polymers on the Scale that Roll-to-Roll Processing Demands DTU Orbit (12/12/2018) Making Ends Meet: Flow Synthesis as the Answer to Reproducible High-Performance Conjugated Polymers on the Scale that Roll-to-Roll Processing Demands Continuous flow methods are employed for the controlled polymerization of the roll-to-roll (R2R) compatible polymer PBDTTTz-4 including optimization and upscaling experiments. The polymerization rate and materials’ quality can be increased significantly with the continuous fl ow method where reaction times down to 10 min afforded PBDTTTz-4 with high molecular weight and a constant quality. The flow method enables full control of the molecular weight via tuning of the flow speed, catalyst loading, and temperature and avoids variation in materials’ quality associated with conventional batch synthesis. Upscaling from 300 mg batch synthesis to 10 g flow synthesis affords PBDTTTz-4 with a production rate of up to 120 g day −1 for a very simple in-house build flow reactor. An average power conversion efficiency (PCE) of 3.5% is achieved on a small scale (1 cm 2 ) and an average PCE of 3.3% is achieved on a large scale (29 cm2 ). This shows that small device efficiencies can be scaled when using full R2R processing of flexible and encapsulated carbon-based modules without the use of vacuum, indium-tin-oxide, or silver, with the best achieving a PCE of 3.8% PCE.
入不敷出
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Year''s Work in Critical and Cultural Theory
Year''s Work in Critical and Cultural Theory Arts and Humanities-Literature and Literary Theory
CiteScore
0.20
自引率
0.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信