Interface dynamics in a two-phase tumor growth model

IF 1.2 4区 数学 Q1 MATHEMATICS
Inwon C. Kim, Jiajun Tong
{"title":"Interface dynamics in a two-phase tumor growth model","authors":"Inwon C. Kim, Jiajun Tong","doi":"10.4171/ifb/454","DOIUrl":null,"url":null,"abstract":"We study a tumor growth model in two space dimensions, where proliferation of the tumor cells leads to expansion of the tumor domain and migration of surrounding normal tissues into the exterior vacuum. The model features two moving interfaces separating the tumor, the normal tissue, and the exterior vacuum. We prove local-in-time existence and uniqueness of strong solutions for their evolution starting from a nearly radial initial configuration. It is assumed that the tumor has lower mobility than the normal tissue, which is in line with the well-known Saffman-Taylor condition in viscous fingering.","PeriodicalId":13863,"journal":{"name":"Interfaces and Free Boundaries","volume":"1 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2020-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interfaces and Free Boundaries","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ifb/454","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

Abstract

We study a tumor growth model in two space dimensions, where proliferation of the tumor cells leads to expansion of the tumor domain and migration of surrounding normal tissues into the exterior vacuum. The model features two moving interfaces separating the tumor, the normal tissue, and the exterior vacuum. We prove local-in-time existence and uniqueness of strong solutions for their evolution starting from a nearly radial initial configuration. It is assumed that the tumor has lower mobility than the normal tissue, which is in line with the well-known Saffman-Taylor condition in viscous fingering.
两期肿瘤生长模型的界面动力学
我们研究了一个二维的肿瘤生长模型,其中肿瘤细胞的增殖导致肿瘤区域的扩张和周围正常组织向外部真空的迁移。该模型具有两个移动界面,将肿瘤、正常组织和外部真空分开。我们证明了强解从一个近径向初始构型开始演化的局部存在唯一性。假设肿瘤的移动性低于正常组织,这符合众所周知的粘指中的Saffman-Taylor条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
17
审稿时长
>12 weeks
期刊介绍: Interfaces and Free Boundaries is dedicated to the mathematical modelling, analysis and computation of interfaces and free boundary problems in all areas where such phenomena are pertinent. The journal aims to be a forum where mathematical analysis, partial differential equations, modelling, scientific computing and the various applications which involve mathematical modelling meet. Submissions should, ideally, emphasize the combination of theory and application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信