Threshold Autoregressive Nearest-Neighbour Models for Claims Reserving

IF 2 Q2 ECONOMICS
Tak Kuen Siu
{"title":"Threshold Autoregressive Nearest-Neighbour Models for Claims Reserving","authors":"Tak Kuen Siu","doi":"10.1016/j.ecosta.2022.03.006","DOIUrl":null,"url":null,"abstract":"<div><div>Motivated by claims reserving in run-off triangles, a class of threshold autoregressive nearest-neighbour (TAR-NN) models extending a major class of parametric nonlinear time series models, namely threshold autoregressive (TAR) models, is introduced. The proposed class of models also introduces a flexible regime-switching mechanism to nearest-neighbour models. Attention is given to a sub-class of TAR-NN models, namely self-exciting threshold autoregressive nearest-neighbour models (SETAR-NN), for uses in claims reserving. The (strict) stationarity and geometric ergodicity of the SETAR-NN model, and more generally, a two-dimensional nonlinear autoregressive random field, are discussed. The conditional least-square (CLS) method is used to estimate the SETAR-NN model and some of its nested models. Simulation studies on the parameter estimates from the CLS method are conducted. Using real insurance claims data and stochastic simulations, the applications of the SETAR-NN model and the nested models for projecting future claims liabilities are discussed. Comparisons of those models with the Bootstrap-Chain-Ladder (BCL) model for claims reserving are provided.</div></div>","PeriodicalId":54125,"journal":{"name":"Econometrics and Statistics","volume":"33 ","pages":"Pages 180-208"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452306222000284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by claims reserving in run-off triangles, a class of threshold autoregressive nearest-neighbour (TAR-NN) models extending a major class of parametric nonlinear time series models, namely threshold autoregressive (TAR) models, is introduced. The proposed class of models also introduces a flexible regime-switching mechanism to nearest-neighbour models. Attention is given to a sub-class of TAR-NN models, namely self-exciting threshold autoregressive nearest-neighbour models (SETAR-NN), for uses in claims reserving. The (strict) stationarity and geometric ergodicity of the SETAR-NN model, and more generally, a two-dimensional nonlinear autoregressive random field, are discussed. The conditional least-square (CLS) method is used to estimate the SETAR-NN model and some of its nested models. Simulation studies on the parameter estimates from the CLS method are conducted. Using real insurance claims data and stochastic simulations, the applications of the SETAR-NN model and the nested models for projecting future claims liabilities are discussed. Comparisons of those models with the Bootstrap-Chain-Ladder (BCL) model for claims reserving are provided.
索赔保留的阈值自回归近邻模型
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
10.50%
发文量
84
期刊介绍: Econometrics and Statistics is the official journal of the networks Computational and Financial Econometrics and Computational and Methodological Statistics. It publishes research papers in all aspects of econometrics and statistics and comprises of the two sections Part A: Econometrics and Part B: Statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信