{"title":"A Stochastic Inference-Dual-Based Decomposition Algorithm for TSO-DSO-Retailer Coordination","authors":"Hamed Bakhtiari;Mohammad Reza Hesamzadeh;Derek Bunn","doi":"10.1109/TEMPR.2023.3301810","DOIUrl":null,"url":null,"abstract":"The flexibility services available from embedded resources, being attractive to both the network operators and retailers, pose a problem of co-ordination and market design at the local level. This research considers how a Flexibility Market Operator (FMO) at the local level, analogous to market operators at the wholesale level, can improve the real-time operation of the power systems and efficiently manage the interests of the TSO, DSO, and Retailers. Using generalized disjunctive programming, a stochastic bilevel representation of the task is reformulated as a stochastic mixed-logical linear program (MLLP) with indicator constraints. An Inference-Dual-Based Decomposition (IDBD) Algorithm is developed with sub-problem relaxation to reduce the iterations. Using expected Shapley values, a new payoff mechanism is introduced to allocate the cost of service activations in a fair way. Finally, the performance and benefits of the proposed method are assessed via a case study application.","PeriodicalId":100639,"journal":{"name":"IEEE Transactions on Energy Markets, Policy and Regulation","volume":"2 1","pages":"13-29"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Energy Markets, Policy and Regulation","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10207700/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The flexibility services available from embedded resources, being attractive to both the network operators and retailers, pose a problem of co-ordination and market design at the local level. This research considers how a Flexibility Market Operator (FMO) at the local level, analogous to market operators at the wholesale level, can improve the real-time operation of the power systems and efficiently manage the interests of the TSO, DSO, and Retailers. Using generalized disjunctive programming, a stochastic bilevel representation of the task is reformulated as a stochastic mixed-logical linear program (MLLP) with indicator constraints. An Inference-Dual-Based Decomposition (IDBD) Algorithm is developed with sub-problem relaxation to reduce the iterations. Using expected Shapley values, a new payoff mechanism is introduced to allocate the cost of service activations in a fair way. Finally, the performance and benefits of the proposed method are assessed via a case study application.