On the existence of \(D(-3)\)-quadruples over \(\mathbb{Z}\)

Pub Date : 2022-12-30 DOI:10.3336/gm.57.2.03
A. Filipin, Ana Jurasic
{"title":"On the existence of \\(D(-3)\\)-quadruples over \\(\\mathbb{Z}\\)","authors":"A. Filipin, Ana Jurasic","doi":"10.3336/gm.57.2.03","DOIUrl":null,"url":null,"abstract":"In this paper we prove that there does not exist a set of four non-zero polynomials from \\(\\mathbb{Z}[X]\\), not all constant, such that the product of any two of its distinct elements decreased by \\(3\\) is a square of a polynomial from \\(\\mathbb{Z}[X]\\).","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3336/gm.57.2.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we prove that there does not exist a set of four non-zero polynomials from \(\mathbb{Z}[X]\), not all constant, such that the product of any two of its distinct elements decreased by \(3\) is a square of a polynomial from \(\mathbb{Z}[X]\).
分享
查看原文
关于\(D(-3)\) -四倍倍数的存在性 \(\mathbb{Z}\)
本文证明了不存在一个由四个非零多项式组成的集合 \(\mathbb{Z}[X]\),不全是常数,使得任意两个不同元素的乘积减去 \(3\) 多项式的平方是从哪里来的 \(\mathbb{Z}[X]\).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信