Transarterial chemoembolization of hepatocellular carcinoma: Can intraprocedural DYNA computed tomography serve as a guiding tool for the interventionist?
Manzoor Hussain, T. Shera, Omair Shah, N. Choh, Feroze A. Shaheen, T. Gojwari, G. Bhat, G. Gulzar
{"title":"Transarterial chemoembolization of hepatocellular carcinoma: Can intraprocedural DYNA computed tomography serve as a guiding tool for the interventionist?","authors":"Manzoor Hussain, T. Shera, Omair Shah, N. Choh, Feroze A. Shaheen, T. Gojwari, G. Bhat, G. Gulzar","doi":"10.4103/jcrsm.jcrsm_19_21","DOIUrl":null,"url":null,"abstract":"Aims And Objectives: We evaluated the role of Dyna CT in localizing HCC lesions and their selective vascular supply to help guide chemoembolization. We also evaluated the role of Dyna CT in assessing drug deposition within the lesion and predict the need of further drug delivery. Methods: 24 patients with documented HCC were taken up for TACE after a pre-procedural contrast CT and MRI. An intra-procedural Dyna CT was done in all patients to obtain a three dimensional overview of the vascular network. Selective cannulation of the tumor arteries was achieved using a combined digital subtraction angiography and Dyna CT image guidance. Additional lesions and vessels identified on Dyna CT were also treated. Drug deposition within the lesion marking technical success was assessed on completion Dyna CT and the need for additional drug delivery was assessed. Results: Contrast CT identified 36 lesions, DSA 33 lesions and Dyna CT 39 lesions in 24 patients. Dyna CT was the most sensitive for lesions <10 mm (p=0.006). Dyna CT identified 4 additional supplying lesion supplying arteries (2 hepatic, 2 extra hepatic) compared to DSA. In 6(25%) patients DYNA CT helped in improvement in catheter position in the form of more selective catheterization. 35 (90%) lesions showed homogenous Type 1 deposition, two lesions (5%) showed Type 2 and the other two (5%) showed type 3 deposition of lipoidol on completion Dyna CT. The latter two were further treated to achieve type 1 deposition and 100% technical success. Conclusion: Dyna CT can effectively guide TACE procedure by not only identifying the lesions and their vascular supply but also helping in guiding the catheter for selective cannulation and drug deposition. Completion Dyna CT can effectively assess drug deposition and the need for additional treatment in the same setting if needed.","PeriodicalId":32638,"journal":{"name":"Journal of Current Research in Scientific Medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Current Research in Scientific Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jcrsm.jcrsm_19_21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Aims And Objectives: We evaluated the role of Dyna CT in localizing HCC lesions and their selective vascular supply to help guide chemoembolization. We also evaluated the role of Dyna CT in assessing drug deposition within the lesion and predict the need of further drug delivery. Methods: 24 patients with documented HCC were taken up for TACE after a pre-procedural contrast CT and MRI. An intra-procedural Dyna CT was done in all patients to obtain a three dimensional overview of the vascular network. Selective cannulation of the tumor arteries was achieved using a combined digital subtraction angiography and Dyna CT image guidance. Additional lesions and vessels identified on Dyna CT were also treated. Drug deposition within the lesion marking technical success was assessed on completion Dyna CT and the need for additional drug delivery was assessed. Results: Contrast CT identified 36 lesions, DSA 33 lesions and Dyna CT 39 lesions in 24 patients. Dyna CT was the most sensitive for lesions <10 mm (p=0.006). Dyna CT identified 4 additional supplying lesion supplying arteries (2 hepatic, 2 extra hepatic) compared to DSA. In 6(25%) patients DYNA CT helped in improvement in catheter position in the form of more selective catheterization. 35 (90%) lesions showed homogenous Type 1 deposition, two lesions (5%) showed Type 2 and the other two (5%) showed type 3 deposition of lipoidol on completion Dyna CT. The latter two were further treated to achieve type 1 deposition and 100% technical success. Conclusion: Dyna CT can effectively guide TACE procedure by not only identifying the lesions and their vascular supply but also helping in guiding the catheter for selective cannulation and drug deposition. Completion Dyna CT can effectively assess drug deposition and the need for additional treatment in the same setting if needed.