Priya A. Hoskeri, A. Gayathri, N. Ayachit, C. M. Joseph
{"title":"Iodine Doping Studies on Nonannealed Perylene 3,4,9,10-Tetra Carboxylic Dianhydride/Cobalt Phthalocyanine Bulk Heterojunction Solar Cells","authors":"Priya A. Hoskeri, A. Gayathri, N. Ayachit, C. M. Joseph","doi":"10.1177/1943089213507021","DOIUrl":null,"url":null,"abstract":"Perylene 3,4,9,10-tetra carboxylic dianhydride (PTCDA) thin films find a lot of optoelectronic applications. In this work, thin films of PTCDA were deposited using vacuum evaporation technique onto clean glass substrates and the variation in conductivity, optical bandgap and percentage transmission due to iodine doping for different time intervals are discussed. To study the doping effects on devices, organic solar cells based on cobalt phthalocyanine (CoPc)/PTCDA as active layers on indium tin oxide–coated glass substrates were fabricated and characterized to evaluate the solar cell parameters. It was found that doping with iodine considerably increases the power conversion efficiency of the solar cells.","PeriodicalId":13985,"journal":{"name":"International Journal of Green Nanotechnology","volume":"1125 1","pages":"1943089213507021"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Green Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1943089213507021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Perylene 3,4,9,10-tetra carboxylic dianhydride (PTCDA) thin films find a lot of optoelectronic applications. In this work, thin films of PTCDA were deposited using vacuum evaporation technique onto clean glass substrates and the variation in conductivity, optical bandgap and percentage transmission due to iodine doping for different time intervals are discussed. To study the doping effects on devices, organic solar cells based on cobalt phthalocyanine (CoPc)/PTCDA as active layers on indium tin oxide–coated glass substrates were fabricated and characterized to evaluate the solar cell parameters. It was found that doping with iodine considerably increases the power conversion efficiency of the solar cells.