Efficient Adaptive Mesh Refinement Modeling of Adhesive Joints

A. Tessler, M. Dambach, D. Oplinger
{"title":"Efficient Adaptive Mesh Refinement Modeling of Adhesive Joints","authors":"A. Tessler, M. Dambach, D. Oplinger","doi":"10.1520/CTR10567J","DOIUrl":null,"url":null,"abstract":"The smoothing element analysis for stress recovery and error estimation is applied to facilitate adaptive finite element solutions of adhesively bonded structures. The formulation is based on the minimization of a penalized discrete least-squares variational principle leading up to the recovery of C 1 -continuous stress fields from discrete, Gauss-point finite element stresses. The smoothed distributions are then used as reference solutions in a posteriors error estimators. Adaptive mesh refinements are performed to predict the linearly elastic response of uniformed and tapered double splice adhesively bonded joints. Key aspects pertaining to specific smoothing strategies, adaptive refinement solutions, and detailed stress distributions are discussed. Consistent comparisons are also presented with Oplinger's one-dimensional adhesive lap joint analysis.","PeriodicalId":15514,"journal":{"name":"Journal of Composites Technology & Research","volume":"605 1","pages":"152-179"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Composites Technology & Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1520/CTR10567J","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The smoothing element analysis for stress recovery and error estimation is applied to facilitate adaptive finite element solutions of adhesively bonded structures. The formulation is based on the minimization of a penalized discrete least-squares variational principle leading up to the recovery of C 1 -continuous stress fields from discrete, Gauss-point finite element stresses. The smoothed distributions are then used as reference solutions in a posteriors error estimators. Adaptive mesh refinements are performed to predict the linearly elastic response of uniformed and tapered double splice adhesively bonded joints. Key aspects pertaining to specific smoothing strategies, adaptive refinement solutions, and detailed stress distributions are discussed. Consistent comparisons are also presented with Oplinger's one-dimensional adhesive lap joint analysis.
粘接接头的高效自适应网格细化建模
将应力恢复和误差估计的光滑单元分析应用于粘接结构的自适应有限元求解。该公式基于最小化惩罚离散最小二乘变分原理,导致c1 -连续应力场从离散的高斯点有限元应力中恢复。然后将平滑分布用作后验误差估计器的参考解。采用自适应网格细化方法预测均匀和锥形双接头的线弹性响应。讨论了有关特定平滑策略、自适应细化解决方案和详细应力分布的关键方面。并与Oplinger的一维粘接搭接分析进行了一致的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信