Drowsiness detection in dorsolateral-prefrontal cortex using fNIRS for a passive-BCI

M. Jawad Khan, K. Hong, Noman Naseer, M. R. Bhutta
{"title":"Drowsiness detection in dorsolateral-prefrontal cortex using fNIRS for a passive-BCI","authors":"M. Jawad Khan, K. Hong, Noman Naseer, M. R. Bhutta","doi":"10.1109/ICCAS.2015.7364653","DOIUrl":null,"url":null,"abstract":"In this paper, we have investigated the feasibility of detecting drowsiness using hemodynamic brain signals for a passive brain-computer interface (BCI). Functional near-infrared spectroscopy (fNIRS) is used to measure the right dorsolateral-prefrontal brain region in order to investigate the hemodynamic changes corresponding to drowsy and alert states. The data is recorded using five drowsy subjects during a simulated car driving task. The recoded data are converted into oxy- and deoxy-hemoglobin (HBO and HbR) using the modified Beer-Lambert law (MBLL) for feature extraction and classification. Signal mean and signal slope are extracted using the spatio-temporal time windows as features. Linear discriminant analysis (LDA) and support vector machines (SVM) are used for the training and testing of the brain data. The classification accuracy obtained using offline analyses is 74% and 77% respectively. The results show that drowsy and alert states are distinguishable from the right dorsolateral prefrontal brain region. Also, fNIRS modality can be used for drowsiness detection for a passive BCI.","PeriodicalId":6641,"journal":{"name":"2015 15th International Conference on Control, Automation and Systems (ICCAS)","volume":"154 1","pages":"1811-1816"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 15th International Conference on Control, Automation and Systems (ICCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAS.2015.7364653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we have investigated the feasibility of detecting drowsiness using hemodynamic brain signals for a passive brain-computer interface (BCI). Functional near-infrared spectroscopy (fNIRS) is used to measure the right dorsolateral-prefrontal brain region in order to investigate the hemodynamic changes corresponding to drowsy and alert states. The data is recorded using five drowsy subjects during a simulated car driving task. The recoded data are converted into oxy- and deoxy-hemoglobin (HBO and HbR) using the modified Beer-Lambert law (MBLL) for feature extraction and classification. Signal mean and signal slope are extracted using the spatio-temporal time windows as features. Linear discriminant analysis (LDA) and support vector machines (SVM) are used for the training and testing of the brain data. The classification accuracy obtained using offline analyses is 74% and 77% respectively. The results show that drowsy and alert states are distinguishable from the right dorsolateral prefrontal brain region. Also, fNIRS modality can be used for drowsiness detection for a passive BCI.
fNIRS在被动脑机接口中检测背外侧-前额叶皮层的困倦
在本文中,我们研究了利用被动脑机接口(BCI)的血流动力学脑信号检测困倦的可行性。采用功能性近红外光谱(fNIRS)测量右脑背外侧-前额叶区,研究困倦和清醒状态下的血流动力学变化。这些数据是由五名昏昏欲睡的受试者在模拟汽车驾驶任务中记录下来的。利用改进的Beer-Lambert定律(MBLL)将编码后的数据转换为氧血红蛋白和脱氧血红蛋白(HBO和HbR),进行特征提取和分类。以时空窗为特征提取信号均值和信号斜率。采用线性判别分析(LDA)和支持向量机(SVM)对脑数据进行训练和测试。使用离线分析获得的分类准确率分别为74%和77%。结果表明,困倦和清醒状态在右侧前额叶背外侧脑区是可区分的。此外,fNIRS模式可用于被动脑机接口的睡意检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信