Stress-Dependent Magnetic Charge Model for Micro-Defects of Steel Wire Based on the Magnetic Memory Method

IF 1 4区 材料科学 Q3 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
S. Su, Xiaoping Ma, Wei Wang, Yiyi Yang
{"title":"Stress-Dependent Magnetic Charge Model for Micro-Defects of Steel Wire Based on the Magnetic Memory Method","authors":"S. Su, Xiaoping Ma, Wei Wang, Yiyi Yang","doi":"10.1080/09349847.2019.1617914","DOIUrl":null,"url":null,"abstract":"ABSTRACT Magnetic memory method (MMM) is widely used for diagnosing ferromagnetic material on early stage as a nondestructive technology, but no clear description exists for the influence of stress on MMM signals at the micro-defect position on the surface of steel wire yet. Hence, based on traditional magnetic charge model, a stress-dependent magnetic charge model that combined the Jiles magneto-mechanical constitutive relation was intended to calculate the MMM signals around micro-defect on surface of steel wire. Meanwhile, the Hp(y) signals on surface of steel wire with different defects were measured during the whole tension test. By comparing the results of theoretical model and experiment, some conclusions can be drawn. First, the position of vale-peak on Hp(y) signals curves can be used to determine the micro-defect on steel wire. Secondly, the vale-peak amplitude (Sv-p) and vale-peak width (Lv-p) of Hp(y) signals curves, as two characteristic parameters of magnetic signals, not only can reflect the variations of defect depth and defect width, but also judge the load subjected by specimen. Sv-p has an approximate growth with the increase of defect depth as a whole, but decreases with the increase of loads. And the effect of load on Sv-p increases with defect depth. Lv-p has an approximate growth with the increase of defect width as a whole, but does not change with the increase of loads. Finally, the stress-dependent magnetic charge model can be better to reflect the changing laws of Hp(y) signals around defect and can be used for the numerical analysis of MMM signals on surface of steel wire.","PeriodicalId":54493,"journal":{"name":"Research in Nondestructive Evaluation","volume":"78 1","pages":"24 - 47"},"PeriodicalIF":1.0000,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09349847.2019.1617914","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 15

Abstract

ABSTRACT Magnetic memory method (MMM) is widely used for diagnosing ferromagnetic material on early stage as a nondestructive technology, but no clear description exists for the influence of stress on MMM signals at the micro-defect position on the surface of steel wire yet. Hence, based on traditional magnetic charge model, a stress-dependent magnetic charge model that combined the Jiles magneto-mechanical constitutive relation was intended to calculate the MMM signals around micro-defect on surface of steel wire. Meanwhile, the Hp(y) signals on surface of steel wire with different defects were measured during the whole tension test. By comparing the results of theoretical model and experiment, some conclusions can be drawn. First, the position of vale-peak on Hp(y) signals curves can be used to determine the micro-defect on steel wire. Secondly, the vale-peak amplitude (Sv-p) and vale-peak width (Lv-p) of Hp(y) signals curves, as two characteristic parameters of magnetic signals, not only can reflect the variations of defect depth and defect width, but also judge the load subjected by specimen. Sv-p has an approximate growth with the increase of defect depth as a whole, but decreases with the increase of loads. And the effect of load on Sv-p increases with defect depth. Lv-p has an approximate growth with the increase of defect width as a whole, but does not change with the increase of loads. Finally, the stress-dependent magnetic charge model can be better to reflect the changing laws of Hp(y) signals around defect and can be used for the numerical analysis of MMM signals on surface of steel wire.
基于磁记忆法的钢丝微缺陷应力相关磁荷模型
摘要磁记忆法作为一种无损检测技术,被广泛用于铁磁性材料的早期诊断,但对于钢丝表面微缺陷位置应力对磁记忆信号的影响,目前还没有明确的描述。因此,在传统磁荷模型的基础上,拟建立一种结合Jiles磁-力本构关系的应力相关磁荷模型,计算钢丝表面微缺陷周围的磁磁信号。同时,在整个拉伸试验过程中,测量了不同缺陷钢丝表面的Hp(y)信号。通过对理论模型和实验结果的比较,可以得出一些结论。首先,利用Hp(y)信号曲线上的值峰位置可以确定钢丝上的微缺陷;其次,Hp(y)信号曲线的值-峰幅(svp)和值-峰宽(Lv-p)作为磁信号的两个特征参数,不仅可以反映缺陷深度和缺陷宽度的变化,还可以判断试样所受的载荷。Sv-p总体上随缺陷深度的增加近似增大,但随载荷的增加而减小。载荷对Sv-p的影响随缺陷深度的增加而增大。Lv-p整体上随缺陷宽度的增加近似增长,但不随载荷的增加而变化。最后,应力相关磁荷模型能较好地反映缺陷周围磁荷信号的变化规律,可用于钢丝表面磁荷信号的数值分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Research in Nondestructive Evaluation
Research in Nondestructive Evaluation 工程技术-材料科学:表征与测试
CiteScore
2.30
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: Research in Nondestructive Evaluation® is the archival research journal of the American Society for Nondestructive Testing, Inc. RNDE® contains the results of original research in all areas of nondestructive evaluation (NDE). The journal covers experimental and theoretical investigations dealing with the scientific and engineering bases of NDE, its measurement and methodology, and a wide range of applications to materials and structures that relate to the entire life cycle, from manufacture to use and retirement. Illustrative topics include advances in the underlying science of acoustic, thermal, electrical, magnetic, optical and ionizing radiation techniques and their applications to NDE problems. These problems include the nondestructive characterization of a wide variety of material properties and their degradation in service, nonintrusive sensors for monitoring manufacturing and materials processes, new techniques and combinations of techniques for detecting and characterizing hidden discontinuities and distributed damage in materials, standardization concepts and quantitative approaches for advanced NDE techniques, and long-term continuous monitoring of structures and assemblies. Of particular interest is research which elucidates how to evaluate the effects of imperfect material condition, as quantified by nondestructive measurement, on the functional performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信