Energy Estimate Related to a Hardy-Trudinger-Moser Inequality

IF 0.3 4区 数学 Q4 MATHEMATICS, APPLIED
Yunyan Yang sci
{"title":"Energy Estimate Related to a Hardy-Trudinger-Moser Inequality","authors":"Yunyan Yang sci","doi":"10.4208/jpde.v32.n4.4","DOIUrl":null,"url":null,"abstract":"Let B1 be a unit disc of R2, and H be a completion of C∞ 0 (B1) under the norm ∥u∥H = ∫ B1 ( |∇u|2− u 2 (1−|x|2)2 ) dx. Using blow-up analysis, Wang-Ye [1] proved existence of extremals for a Hardy-TrudingerMoser inequality. In particular, the supremum sup u∈H ,∥u∥H ≤1 ∫ B1 e4πu 2 dx can be attained by some function u0 ∈H with ∥u0∥H =1. This was improved by the author and Zhu [2] to a version involving the first eigenvalue of the Hardy-Laplacian operator −∆−1/(1−|x|2)2. In this note, the results of [1, 2] will be reproved by the method of energy estimate, which was recently developed by Malchiodi-Martinazzi [3] and Mancini-Martinazzi [4]. AMS Subject Classifications: 35A01, 35B33, 35B44, 34E05 Chinese Library Classifications: O17","PeriodicalId":43504,"journal":{"name":"Journal of Partial Differential Equations","volume":"54 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/jpde.v32.n4.4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 4

Abstract

Let B1 be a unit disc of R2, and H be a completion of C∞ 0 (B1) under the norm ∥u∥H = ∫ B1 ( |∇u|2− u 2 (1−|x|2)2 ) dx. Using blow-up analysis, Wang-Ye [1] proved existence of extremals for a Hardy-TrudingerMoser inequality. In particular, the supremum sup u∈H ,∥u∥H ≤1 ∫ B1 e4πu 2 dx can be attained by some function u0 ∈H with ∥u0∥H =1. This was improved by the author and Zhu [2] to a version involving the first eigenvalue of the Hardy-Laplacian operator −∆−1/(1−|x|2)2. In this note, the results of [1, 2] will be reproved by the method of energy estimate, which was recently developed by Malchiodi-Martinazzi [3] and Mancini-Martinazzi [4]. AMS Subject Classifications: 35A01, 35B33, 35B44, 34E05 Chinese Library Classifications: O17
与Hardy-Trudinger-Moser不等式相关的能量估计
设B1是R2的一个单位圆盘,H是C∞0 (B1)在范数∥u∥H =∫B1 (| u|2 - u 2(1−|x|2)2) dx下的补全。Wang-Ye[1]利用爆破分析证明了Hardy-TrudingerMoser不等式的极值存在性。其中,u∈H,∥u∥H≤1∫B1 e4πu 2 dx的上极值可以由某函数u0∈H,且∥u0∥H =1求得。这被作者和Zhu[2]改进为包含Hardy-Laplacian算子−∆−1/(1−|x|2)2的第一个特征值的版本。本文将采用Malchiodi-Martinazzi[3]和Mancini-Martinazzi[4]新近提出的能量估计方法对[1,2]的结果进行修正。AMS学科分类:35A01, 35B33, 35B44, 34E05中文图书馆分类:O17
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
33.30%
发文量
551
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信