Learning kernels with upper bounds of leave-one-out error

Yong Liu, Shizhong Liao, Yuexian Hou
{"title":"Learning kernels with upper bounds of leave-one-out error","authors":"Yong Liu, Shizhong Liao, Yuexian Hou","doi":"10.1145/2063576.2063927","DOIUrl":null,"url":null,"abstract":"We propose a new leaning method for Multiple Kernel Learning (MKL) based on the upper bounds of the leave-one-out error that is an almost unbiased estimate of the expected generalization error. Specifically, we first present two new formulations for MKL by minimizing the upper bounds of the leave-one-out error. Then, we compute the derivatives of these bounds and design an efficient iterative algorithm for solving these formulations. Experimental results show that the proposed method gives better accuracy results than that of both SVM with the uniform combination of basis kernels and other state-of-art kernel learning approaches.","PeriodicalId":74507,"journal":{"name":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","volume":"149 1","pages":"2205-2208"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2063576.2063927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

We propose a new leaning method for Multiple Kernel Learning (MKL) based on the upper bounds of the leave-one-out error that is an almost unbiased estimate of the expected generalization error. Specifically, we first present two new formulations for MKL by minimizing the upper bounds of the leave-one-out error. Then, we compute the derivatives of these bounds and design an efficient iterative algorithm for solving these formulations. Experimental results show that the proposed method gives better accuracy results than that of both SVM with the uniform combination of basis kernels and other state-of-art kernel learning approaches.
学习误差上界为留一的核函数
我们提出了一种基于留一误差上界的多核学习(MKL)的新学习方法,该方法是期望泛化误差的几乎无偏估计。具体而言,我们首先通过最小化留一误差的上界提出了MKL的两个新公式。然后,我们计算这些边界的导数,并设计一个有效的迭代算法来求解这些公式。实验结果表明,该方法比基核统一组合的支持向量机和其他核学习方法具有更好的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信