K. Choudhury, Yanyan Cao, J. Caspar, W. Farneth, Qijie Guo, A. Ionkin, L. Johnson, Meijun Lu, I. Malajovich, D. Radu, H. D. Rosenfeld, Wei Wu
{"title":"Characterization and understanding of performance losses in a highly efficient solution-processed CZTSSe thin-film solar cell","authors":"K. Choudhury, Yanyan Cao, J. Caspar, W. Farneth, Qijie Guo, A. Ionkin, L. Johnson, Meijun Lu, I. Malajovich, D. Radu, H. D. Rosenfeld, Wei Wu","doi":"10.1109/PVSC.2012.6317874","DOIUrl":null,"url":null,"abstract":"We present results on the characterization of a highly efficient CZTSSe solar cell fabricated using a solution-based process, aiming to gain a better understanding of its efficiency-limiting causes. Under red light illumination, we observed a red-kink in the current-density versus voltage (J-V) curve, likely due to a persistent photoconductivity in the buffer layer. Temperature-dependent J-V analysis suggests that interface recombination is the dominant loss mechanism. Defect analysis using admittance spectroscopy (AS) shows a single bulk defect level at ~63 meV and may be attributed to copper vacancy (VCu). The carrier concentration of the device determined using drive-level capacitance profiling (DLCP) is ~2.5×1016 cm-3.","PeriodicalId":6318,"journal":{"name":"2012 38th IEEE Photovoltaic Specialists Conference","volume":"137 1","pages":"001471-001474"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 38th IEEE Photovoltaic Specialists Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2012.6317874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
We present results on the characterization of a highly efficient CZTSSe solar cell fabricated using a solution-based process, aiming to gain a better understanding of its efficiency-limiting causes. Under red light illumination, we observed a red-kink in the current-density versus voltage (J-V) curve, likely due to a persistent photoconductivity in the buffer layer. Temperature-dependent J-V analysis suggests that interface recombination is the dominant loss mechanism. Defect analysis using admittance spectroscopy (AS) shows a single bulk defect level at ~63 meV and may be attributed to copper vacancy (VCu). The carrier concentration of the device determined using drive-level capacitance profiling (DLCP) is ~2.5×1016 cm-3.