{"title":"A weakly supervised learning method for vehicle identification code detection and recognition","authors":"Cao Zhi, Shang Lidan, Yin Dong","doi":"10.12086/OEE.2021.200270","DOIUrl":null,"url":null,"abstract":"The vehicle identification code (VIN) is of great significance to the annual vehicle inspection. However, due to the lack of character-level annotations, it is impossible to perform the single-character style check on the VIN. To solve this problem, a single-character detection and recognition framework for VIN is designed and a weakly supervised learning algorithm without character-level annotation is proposed for this framework. Firstly, the feature information of each level of VGG16-BN is fused to obtain a fusion feature map with single-character position information and semantic information. Secondly, a network structure for both the character detection branch and the character recognition branch is designed to extract the position and semantic information of a single character in the fusion feature map. Finally, using the text length and single-character category information, the proposed framework is weakly supervised on the vehicle identification code data set without character-level annotations. On the VIN test set, experimental results show that the proposed method realizes the Hmean score of 0.964 and a single-character detection and recognition accuracy rate of 95.7%, showing high practicability.","PeriodicalId":39552,"journal":{"name":"光电工程","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"光电工程","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12086/OEE.2021.200270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
The vehicle identification code (VIN) is of great significance to the annual vehicle inspection. However, due to the lack of character-level annotations, it is impossible to perform the single-character style check on the VIN. To solve this problem, a single-character detection and recognition framework for VIN is designed and a weakly supervised learning algorithm without character-level annotation is proposed for this framework. Firstly, the feature information of each level of VGG16-BN is fused to obtain a fusion feature map with single-character position information and semantic information. Secondly, a network structure for both the character detection branch and the character recognition branch is designed to extract the position and semantic information of a single character in the fusion feature map. Finally, using the text length and single-character category information, the proposed framework is weakly supervised on the vehicle identification code data set without character-level annotations. On the VIN test set, experimental results show that the proposed method realizes the Hmean score of 0.964 and a single-character detection and recognition accuracy rate of 95.7%, showing high practicability.