A weakly supervised learning method for vehicle identification code detection and recognition

Q3 Engineering
Cao Zhi, Shang Lidan, Yin Dong
{"title":"A weakly supervised learning method for vehicle identification code detection and recognition","authors":"Cao Zhi, Shang Lidan, Yin Dong","doi":"10.12086/OEE.2021.200270","DOIUrl":null,"url":null,"abstract":"The vehicle identification code (VIN) is of great significance to the annual vehicle inspection. However, due to the lack of character-level annotations, it is impossible to perform the single-character style check on the VIN. To solve this problem, a single-character detection and recognition framework for VIN is designed and a weakly supervised learning algorithm without character-level annotation is proposed for this framework. Firstly, the feature information of each level of VGG16-BN is fused to obtain a fusion feature map with single-character position information and semantic information. Secondly, a network structure for both the character detection branch and the character recognition branch is designed to extract the position and semantic information of a single character in the fusion feature map. Finally, using the text length and single-character category information, the proposed framework is weakly supervised on the vehicle identification code data set without character-level annotations. On the VIN test set, experimental results show that the proposed method realizes the Hmean score of 0.964 and a single-character detection and recognition accuracy rate of 95.7%, showing high practicability.","PeriodicalId":39552,"journal":{"name":"光电工程","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"光电工程","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12086/OEE.2021.200270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The vehicle identification code (VIN) is of great significance to the annual vehicle inspection. However, due to the lack of character-level annotations, it is impossible to perform the single-character style check on the VIN. To solve this problem, a single-character detection and recognition framework for VIN is designed and a weakly supervised learning algorithm without character-level annotation is proposed for this framework. Firstly, the feature information of each level of VGG16-BN is fused to obtain a fusion feature map with single-character position information and semantic information. Secondly, a network structure for both the character detection branch and the character recognition branch is designed to extract the position and semantic information of a single character in the fusion feature map. Finally, using the text length and single-character category information, the proposed framework is weakly supervised on the vehicle identification code data set without character-level annotations. On the VIN test set, experimental results show that the proposed method realizes the Hmean score of 0.964 and a single-character detection and recognition accuracy rate of 95.7%, showing high practicability.
车辆识别码检测与识别的弱监督学习方法
车辆识别码(VIN)对车辆年检具有重要意义。然而,由于缺乏字符级注释,不可能对VIN执行单字符样式检查。为解决这一问题,设计了一种VIN单字符检测识别框架,并提出了一种无字符级标注的弱监督学习算法。首先,对VGG16-BN各层特征信息进行融合,得到包含单字符位置信息和语义信息的融合特征图;其次,设计了字符检测分支和字符识别分支的网络结构,提取融合特征图中单个字符的位置和语义信息;最后,利用文本长度和单字符类别信息,对车辆识别码数据集进行弱监督,不需要字符级标注。在VIN测试集上,实验结果表明,该方法的Hmean得分为0.964,单字符检测识别准确率为95.7%,具有较高的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
光电工程
光电工程 Engineering-Electrical and Electronic Engineering
CiteScore
2.00
自引率
0.00%
发文量
6622
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信