Redundant Information and Predictable Intraday Returns

Michael P Carniol
{"title":"Redundant Information and Predictable Intraday Returns","authors":"Michael P Carniol","doi":"10.2139/ssrn.3283919","DOIUrl":null,"url":null,"abstract":"This paper examines how well investors distinguish between genuinely novel private information and information that already is priced (labeled \"redundant information\"). We derive a structural model of stock price returns that identifies investors’ non-Bayesian weighting of redundant information distinctly from information asymmetry, transaction costs, and serially correlated liquidity trader demand. We estimate this model using five-minute, 12-minute, and 30-minute returns and find that, on average, investors behave as if over 47 percent of the information content in the immediately prior price change is private information. These results suggest an information-processing mechanism that drives momentum and mean reversion in intraday returns.","PeriodicalId":11495,"journal":{"name":"Econometric Modeling: Capital Markets - Forecasting eJournal","volume":"90 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Modeling: Capital Markets - Forecasting eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3283919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper examines how well investors distinguish between genuinely novel private information and information that already is priced (labeled "redundant information"). We derive a structural model of stock price returns that identifies investors’ non-Bayesian weighting of redundant information distinctly from information asymmetry, transaction costs, and serially correlated liquidity trader demand. We estimate this model using five-minute, 12-minute, and 30-minute returns and find that, on average, investors behave as if over 47 percent of the information content in the immediately prior price change is private information. These results suggest an information-processing mechanism that drives momentum and mean reversion in intraday returns.
冗余信息和可预测的日内回报
本文考察了投资者如何区分真正新颖的私人信息和已经定价的信息(标记为“冗余信息”)。我们推导了一个股票价格回报的结构模型,该模型从信息不对称、交易成本和序列相关的流动性交易者需求中明显地识别出投资者对冗余信息的非贝叶斯加权。我们使用5分钟,12分钟和30分钟的回报来估计这个模型,并发现,平均而言,投资者表现得好像在立即之前的价格变化中超过47%的信息内容是私人信息。这些结果表明,信息处理机制驱动动量和平均回归在日内回报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信