{"title":"Relaxation and linear programs in a hybrid control model","authors":"Héctor Jasso-Fuentes, J. Menaldi","doi":"10.4064/am2387-6-2019","DOIUrl":null,"url":null,"abstract":". Some optimality results for hybrid control problems are pre-sented. The hybrid model under study consists of two subdynamics, one of a standard type governed by an ordinary differential equation, and the other of a special type having a discrete evolution. We focus on the case when the interaction between the subdynamics takes place only when the state of the system reaches a given fixed region of the state space. The controller is able to apply two controls, each applied to one of the two subdynamics, whereas the state follows a composite evolution, of continuous type and discrete type. By the relaxation technique, we prove the existence of a pair of controls that minimizes an incurred (discounted) cost. We conclude the analysis by introducing an auxiliary infinite-dimensional linear program to show the equivalence between the initial control problem and its associated relaxed counterpart.","PeriodicalId":52313,"journal":{"name":"Applicationes Mathematicae","volume":"216 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicationes Mathematicae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4064/am2387-6-2019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
. Some optimality results for hybrid control problems are pre-sented. The hybrid model under study consists of two subdynamics, one of a standard type governed by an ordinary differential equation, and the other of a special type having a discrete evolution. We focus on the case when the interaction between the subdynamics takes place only when the state of the system reaches a given fixed region of the state space. The controller is able to apply two controls, each applied to one of the two subdynamics, whereas the state follows a composite evolution, of continuous type and discrete type. By the relaxation technique, we prove the existence of a pair of controls that minimizes an incurred (discounted) cost. We conclude the analysis by introducing an auxiliary infinite-dimensional linear program to show the equivalence between the initial control problem and its associated relaxed counterpart.