Construction and analysis of a high-CO2-requiring mutant of the cyanobacterium Anabaena sp. strain PCC7120

WuMatt Tianfu, Song Lirong, Liu Yongding
{"title":"Construction and analysis of a high-CO2-requiring mutant of the cyanobacterium Anabaena sp. strain PCC7120","authors":"WuMatt Tianfu, Song Lirong, Liu Yongding","doi":"10.1071/PP99186","DOIUrl":null,"url":null,"abstract":"A mutant of Anabaena sp. strain PCC7120 requiring high CO2 was generated using Tn5 mutagenesis. This is the first data for a filamentous cyanobacterium. The mutant was capable of growing at 5% CO2, but incapable of growing at air levels of CO2. Southern hybridization analysis indicated that the Anabaena genome was inserted by the transposon at one site. The apparent photosynthetic affinity of the mutant to external dissolved inorganic carbon (DIC) was about 300 times lower that of the wild type (WT), and the medium alkalization rate as well as the carboxysomal carbonic anhydrase activity of the mutant was also lower than those of the WT. When the mutant was transferred from the culture medium bubbled with 5% CO2 to higher DIC (8.4% CO2) or 1% CO2, it showed similar responses to the WT. However, aberrant carboxysomes were found in the mutant cells through ultrastructural analysis, indicating it was most probably the wrong organization of the carboxysomes that eventually led to the inefficient operation of carboxysomal carbonic anhydrase and the subsequent defectiveness of the mutant in utilizing DIC.","PeriodicalId":8650,"journal":{"name":"Australian Journal of Plant Physiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Plant Physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1071/PP99186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A mutant of Anabaena sp. strain PCC7120 requiring high CO2 was generated using Tn5 mutagenesis. This is the first data for a filamentous cyanobacterium. The mutant was capable of growing at 5% CO2, but incapable of growing at air levels of CO2. Southern hybridization analysis indicated that the Anabaena genome was inserted by the transposon at one site. The apparent photosynthetic affinity of the mutant to external dissolved inorganic carbon (DIC) was about 300 times lower that of the wild type (WT), and the medium alkalization rate as well as the carboxysomal carbonic anhydrase activity of the mutant was also lower than those of the WT. When the mutant was transferred from the culture medium bubbled with 5% CO2 to higher DIC (8.4% CO2) or 1% CO2, it showed similar responses to the WT. However, aberrant carboxysomes were found in the mutant cells through ultrastructural analysis, indicating it was most probably the wrong organization of the carboxysomes that eventually led to the inefficient operation of carboxysomal carbonic anhydrase and the subsequent defectiveness of the mutant in utilizing DIC.
蓝藻水蓝藻高co2需求突变体PCC7120的构建与分析
利用Tn5诱变技术,获得了一株高CO2需用的水藻(Anabaena sp.) PCC7120突变体。这是关于丝状蓝藻的第一个数据。突变体能够在5%的二氧化碳中生长,但不能在空气中的二氧化碳水平下生长。南方杂交分析表明,该转座子在一个位点插入了鱼腥鱼基因组。突变体对外部溶解无机碳(DIC)的表观光合亲和力比野生型(WT)低约300倍,培养基碱化率和羧体碳酸酐酶活性也低于野生型。当突变体从含5% CO2的培养基转移到更高DIC (8.4% CO2)或1% CO2的培养基时,突变体表现出与野生型相似的反应。通过超微结构分析,在突变细胞中发现了异常的羧体,这表明很可能是羧体的错误组织最终导致了羧体碳酸酐酶的低效运行,从而导致突变体无法利用DIC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信