Inventory-style speech enhancement with uncertainty-of-observation techniques

R. M. Nickel, Ramón Fernández Astudillo, D. Kolossa, Steffen Zeiler, Rainer Martin
{"title":"Inventory-style speech enhancement with uncertainty-of-observation techniques","authors":"R. M. Nickel, Ramón Fernández Astudillo, D. Kolossa, Steffen Zeiler, Rainer Martin","doi":"10.1109/ICASSP.2012.6288954","DOIUrl":null,"url":null,"abstract":"We present a new method for inventory-style speech enhancement that significantly improves over earlier approaches [1]. Inventory-style enhancement attempts to resynthesize a clean speech signal from a noisy signal via corpus-based speech synthesis. The advantage of such an approach is that one is not bound to trade noise suppression against signal distortion in the same way that most traditional methods do. A significant improvement in perceptual quality is typically the result. Disadvantages of this new approach, however, include speaker dependency, increased processing delays, and the necessity of substantial system training. Earlier published methods relied on a-priori knowledge of the expected noise type during the training process [1]. In this paper we present a new method that exploits uncertainty-of-observation techniques to circumvent the need for noise specific training. Experimental results show that the new method is not only able to match, but outperform the earlier approaches in perceptual quality.","PeriodicalId":6443,"journal":{"name":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2012.6288954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We present a new method for inventory-style speech enhancement that significantly improves over earlier approaches [1]. Inventory-style enhancement attempts to resynthesize a clean speech signal from a noisy signal via corpus-based speech synthesis. The advantage of such an approach is that one is not bound to trade noise suppression against signal distortion in the same way that most traditional methods do. A significant improvement in perceptual quality is typically the result. Disadvantages of this new approach, however, include speaker dependency, increased processing delays, and the necessity of substantial system training. Earlier published methods relied on a-priori knowledge of the expected noise type during the training process [1]. In this paper we present a new method that exploits uncertainty-of-observation techniques to circumvent the need for noise specific training. Experimental results show that the new method is not only able to match, but outperform the earlier approaches in perceptual quality.
基于观察不确定性技术的清单式语音增强
我们提出了一种新的清单式语音增强方法,该方法比以前的方法有了显著的改进。清单式增强试图通过基于语料库的语音合成从噪声信号中重新合成干净的语音信号。这种方法的优点是,人们不必像大多数传统方法那样,用噪声抑制来对抗信号失真。典型的结果是感知质量的显著提高。然而,这种新方法的缺点包括说话者依赖性,增加处理延迟,以及需要大量的系统训练。先前发表的方法依赖于训练过程中预期噪声类型的先验知识[1]。在本文中,我们提出了一种利用观测不确定性技术来规避噪声特定训练的新方法。实验结果表明,该方法在感知质量上不仅能与已有的方法相媲美,而且优于已有的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信