A. Di Francescantonio, A. Zilli, D. Rocco, F. Conti, V. Vinel, A. Borne, M. Morassi, A. Lemaître, P. Biagioni, L. Duò, C. De Angelis, G. Leo, M. Finazzi, M. Celebrano
{"title":"All-Optical Steering of Light Upconversion by Nonlinear Metasurfaces Through Coherent Control","authors":"A. Di Francescantonio, A. Zilli, D. Rocco, F. Conti, V. Vinel, A. Borne, M. Morassi, A. Lemaître, P. Biagioni, L. Duò, C. De Angelis, G. Leo, M. Finazzi, M. Celebrano","doi":"10.1109/CLEO/Europe-EQEC57999.2023.10231761","DOIUrl":null,"url":null,"abstract":"Frequency upconversion of near-infrared photons to the visible range is strategical for information technology, as it can provide an alternative for the read out of telecom signals using efficient silicon-based detectors. Light upconversion is a nonlinear process mediated by matter that consists in the interaction of either energy-degenerate photons, such as in second-harmonic and third-harmonic generation (THG), or photons with different energies, such as in sum frequency generation (SFG). We recently investigated frequency upconversion in both plasmonic and dielectric nanoantennas [1], [2]. Thanks to the adopted dual-beam pump scheme, where an ultrashort pulse ($\\omega$) at telecom wavelength ($\\lambda=1551\\ \\text{nm}$) impinges on the sample along with its frequency-doubled replica ($2 \\omega$), THG and SFG are degenerate in energy. This, along with coherence, enables the interference between the processes. Yet, we found that in individual nanoantennas symmetry plays a major role in enhancing/suppressing the interference between SFG and THG. By tuning the relative phase between the two impinging pulses, we performed all-optical switching of upconverted light with efficiency > 50% in asymmetric plasmonic antennas [2].","PeriodicalId":19477,"journal":{"name":"Oceans","volume":"23 1","pages":"1-1"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oceans","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEO/Europe-EQEC57999.2023.10231761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Frequency upconversion of near-infrared photons to the visible range is strategical for information technology, as it can provide an alternative for the read out of telecom signals using efficient silicon-based detectors. Light upconversion is a nonlinear process mediated by matter that consists in the interaction of either energy-degenerate photons, such as in second-harmonic and third-harmonic generation (THG), or photons with different energies, such as in sum frequency generation (SFG). We recently investigated frequency upconversion in both plasmonic and dielectric nanoantennas [1], [2]. Thanks to the adopted dual-beam pump scheme, where an ultrashort pulse ($\omega$) at telecom wavelength ($\lambda=1551\ \text{nm}$) impinges on the sample along with its frequency-doubled replica ($2 \omega$), THG and SFG are degenerate in energy. This, along with coherence, enables the interference between the processes. Yet, we found that in individual nanoantennas symmetry plays a major role in enhancing/suppressing the interference between SFG and THG. By tuning the relative phase between the two impinging pulses, we performed all-optical switching of upconverted light with efficiency > 50% in asymmetric plasmonic antennas [2].