Evaluation of Transformer Bushing Moisture Faults Based on Clustering Algorithms and TOPSIS

Yiming Liu, Chang-yun Li, Qingtao Hou, Hong-wei Yan, Xin Cao, Minling Xu
{"title":"Evaluation of Transformer Bushing Moisture Faults Based on Clustering Algorithms and TOPSIS","authors":"Yiming Liu, Chang-yun Li, Qingtao Hou, Hong-wei Yan, Xin Cao, Minling Xu","doi":"10.1109/ICIEA51954.2021.9516298","DOIUrl":null,"url":null,"abstract":"With the continuous expansion of the scale of power grids, the amount of monitoring data of power equipment is growing and the reliability demand of power equipment is increasing. In order to cope with power transformer accidents caused by damp faults in oil-immersed bushings, this paper applies big data clustering technology to construct a bushing damp fault evaluation index system, and combines the posting progress obtained from TOPSIS method to achieve a quantitative assessment of the damp state of bushings. The effectiveness of this method is also verified with examples.","PeriodicalId":6809,"journal":{"name":"2021 IEEE 16th Conference on Industrial Electronics and Applications (ICIEA)","volume":"134 1","pages":"2114-2118"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 16th Conference on Industrial Electronics and Applications (ICIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA51954.2021.9516298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the continuous expansion of the scale of power grids, the amount of monitoring data of power equipment is growing and the reliability demand of power equipment is increasing. In order to cope with power transformer accidents caused by damp faults in oil-immersed bushings, this paper applies big data clustering technology to construct a bushing damp fault evaluation index system, and combines the posting progress obtained from TOPSIS method to achieve a quantitative assessment of the damp state of bushings. The effectiveness of this method is also verified with examples.
基于聚类算法和TOPSIS的变压器套管湿故障评价
随着电网规模的不断扩大,电力设备的监测数据量越来越大,对电力设备的可靠性需求也越来越高。为了应对油浸套管受潮故障引发的电力变压器事故,本文运用大数据聚类技术构建了套管受潮故障评价指标体系,并结合TOPSIS方法获得的发布进度,实现了对套管受潮状态的定量评估。通过算例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信