Computing discrete logarithms using 𝒪((log q)2) operations from {+,-,×,÷,&}

IF 0.1 Q4 MATHEMATICS
C. Schridde
{"title":"Computing discrete logarithms using 𝒪((log q)2) operations from {+,-,×,÷,&}","authors":"C. Schridde","doi":"10.1515/gcc-2016-0009","DOIUrl":null,"url":null,"abstract":"Abstract Given a computational model with registers of unlimited size that is equipped with the set { + , - , × , ÷ , & } = : 𝖮𝖯 ${\\{+,-,\\times,\\div,\\&\\}=:\\mathsf{OP}}$ of unit cost operations, and given a safe prime number q, we present the first explicit algorithm that computes discrete logarithms in ℤ q * ${\\mathbb{Z}^{*}_{q}}$ to a base g using only 𝒪 ⁢ ( ( log ⁡ q ) 2 ) ${\\mathcal{O}((\\log q)^{2})}$ operations from 𝖮𝖯 ${\\mathsf{OP}}$ . For a random n-bit prime number q, the algorithm is successful as long as the subgroup of ℤ q * ${\\mathbb{Z}^{*}_{q}}$ generated by g and the subgroup generated by the element p = 2 ⌊ log 2 ⁡ ( q ) ⌋ ${p=2^{\\lfloor\\log_{2}(q)\\rfloor}}$ share a subgroup of size at least 2 ( 1 - 𝒪 ⁢ ( log ⁡ n / n ) ) ⁢ n ${2^{(1-\\mathcal{O}(\\log n/n))n}}$ .","PeriodicalId":41862,"journal":{"name":"Groups Complexity Cryptology","volume":"1 1","pages":"107 - 91"},"PeriodicalIF":0.1000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complexity Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gcc-2016-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Given a computational model with registers of unlimited size that is equipped with the set { + , - , × , ÷ , & } = : 𝖮𝖯 ${\{+,-,\times,\div,\&\}=:\mathsf{OP}}$ of unit cost operations, and given a safe prime number q, we present the first explicit algorithm that computes discrete logarithms in ℤ q * ${\mathbb{Z}^{*}_{q}}$ to a base g using only 𝒪 ⁢ ( ( log ⁡ q ) 2 ) ${\mathcal{O}((\log q)^{2})}$ operations from 𝖮𝖯 ${\mathsf{OP}}$ . For a random n-bit prime number q, the algorithm is successful as long as the subgroup of ℤ q * ${\mathbb{Z}^{*}_{q}}$ generated by g and the subgroup generated by the element p = 2 ⌊ log 2 ⁡ ( q ) ⌋ ${p=2^{\lfloor\log_{2}(q)\rfloor}}$ share a subgroup of size at least 2 ( 1 - 𝒪 ⁢ ( log ⁡ n / n ) ) ⁢ n ${2^{(1-\mathcal{O}(\log n/n))n}}$ .
用{+,-,x,÷,&}的操作计算离散对数((log q)2)
摘要:给定一个具有无限大小的寄存器的计算模型,该模型具有单位成本运算的{+,-,x, ÷, &} =:𝖮𝖯${\{+,-,\times,\div,\&\}=:\mathsf{OP}}$,并给定一个安全素数q,我们给出了第一个明确的算法,该算法仅使用𝖮𝖯${\mathsf{OP}}$的操作中∑((log∑q) 2) ${\mathcal{O}((\log q)^{2})}$,就可以计算出在∑q * ${\mathbb{Z}^{*}_{q}}$到一个基底g的离散对数。对于一个随机的n位素数q,只要由g生成的子群(q * ${\mathbb{Z}^{*}_{q}}$)和由元素p = 2生成的子群(⌊log 2 (q)⌋)${p=2^{\lfloor\log_{2}(q)\rfloor}}$)共享一个大小至少为2 (1 - ≠(log n / n))≠n ${2^{(1-\mathcal{O}(\log n/n))n}}$的子群,该算法就是成功的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信