Wind Load of Low-Rise Building Based on Fluent Equilibrium Atmospheric Boundary Layer

IF 1 4区 工程技术 Q3 ENGINEERING, MULTIDISCIPLINARY
Li Zhao, LI Yuxue
{"title":"Wind Load of Low-Rise Building Based on Fluent Equilibrium Atmospheric Boundary Layer","authors":"Li Zhao, LI Yuxue","doi":"10.17559/tv-20230205000324","DOIUrl":null,"url":null,"abstract":": The accurate simulation of the self-sustaining equilibrium atmospheric boundary layer is essential in computational wind engineering. In order to solve the problem of poor self-sustaining equilibrium atmospheric boundary layer, the method of adding source terms to the transport equation of the turbulence model was adopted to make the inlet profiles of average wind and turbulence wind consistent with the turbulence model. The consistency of the average wind profiles, turbulent characteristics of the three models at several different positions with and without considering the source terms were investigated respectively according to the corresponding CFD numerical example. Take the TTU low-rise building as an example, the proposed method of numerical simulations of the wind load on the structure surface. The results show that by adding source terms to the transport equations of the SST k-ω turbulence model can better achieve the self-sustaining of the atmospheric boundary layer. The velocity profiles and turbulence characteristics profiles of TTU low-rise building at the entrance and exit have high consistency when adding the source terms. The numerical simulation results of the wind pressure coefficient on the surface of the structure are in good agreement with the wind tunnel tests and field measurement results. It is shown that the method can effectively improve the accuracy simulation of the self-sustaining equilibrium of atmospheric boundary layer. The study conclusion proposes a new idea or research method for modeling the equilibrium atmosphere boundary layer and also provides further CFD simulations in structural wind engineering with theoretical and actual values.","PeriodicalId":49443,"journal":{"name":"Tehnicki Vjesnik-Technical Gazette","volume":"132 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tehnicki Vjesnik-Technical Gazette","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.17559/tv-20230205000324","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

: The accurate simulation of the self-sustaining equilibrium atmospheric boundary layer is essential in computational wind engineering. In order to solve the problem of poor self-sustaining equilibrium atmospheric boundary layer, the method of adding source terms to the transport equation of the turbulence model was adopted to make the inlet profiles of average wind and turbulence wind consistent with the turbulence model. The consistency of the average wind profiles, turbulent characteristics of the three models at several different positions with and without considering the source terms were investigated respectively according to the corresponding CFD numerical example. Take the TTU low-rise building as an example, the proposed method of numerical simulations of the wind load on the structure surface. The results show that by adding source terms to the transport equations of the SST k-ω turbulence model can better achieve the self-sustaining of the atmospheric boundary layer. The velocity profiles and turbulence characteristics profiles of TTU low-rise building at the entrance and exit have high consistency when adding the source terms. The numerical simulation results of the wind pressure coefficient on the surface of the structure are in good agreement with the wind tunnel tests and field measurement results. It is shown that the method can effectively improve the accuracy simulation of the self-sustaining equilibrium of atmospheric boundary layer. The study conclusion proposes a new idea or research method for modeling the equilibrium atmosphere boundary layer and also provides further CFD simulations in structural wind engineering with theoretical and actual values.
基于流畅平衡大气边界层的低层建筑风荷载
大气边界层自维持平衡的精确模拟在计算风工程中是必不可少的。为了解决大气边界层自持平衡差的问题,采用在湍流模型输运方程中加入源项的方法,使平均风和湍流风的入口廓线与湍流模型一致。根据相应的CFD数值算例,分别研究了考虑源项和不考虑源项时三种模式在不同位置的平均风廓线一致性和湍流特性。以TTU低层建筑为例,提出了结构表面风荷载的数值模拟方法。结果表明,在SST k-ω湍流模式的输运方程中加入源项可以更好地实现大气边界层的自维持。加入源项后,TTU低层建筑的入口和出口速度廓线和湍流特性廓线具有较高的一致性。结构表面风压系数的数值模拟结果与风洞试验和现场实测结果吻合较好。结果表明,该方法可以有效地提高大气边界层自维持平衡的模拟精度。研究结论为平衡大气边界层的模拟提供了新的思路或研究方法,也为进一步的结构风工程CFD模拟提供了理论和实际价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tehnicki Vjesnik-Technical Gazette
Tehnicki Vjesnik-Technical Gazette ENGINEERING, MULTIDISCIPLINARY-
CiteScore
1.90
自引率
11.10%
发文量
270
审稿时长
12.6 months
期刊介绍: The journal TEHNIČKI VJESNIK - TECHNICAL GAZETTE publishes scientific and professional papers in the area of technical sciences (mostly from mechanical, electrical and civil engineering, and also from their boundary areas). All articles have undergone peer review and upon acceptance are permanently free of all restrictions on access, for everyone to read and download. For all articles authors will be asked to pay a publication fee prior to the article appearing in the journal. However, this fee only to be paid after the article has been positively reviewed and accepted for publishing. All details can be seen at http://www.tehnicki-vjesnik.com/web/public/page First year of publication: 1994 Frequency (annually): 6
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信