A. Ilie, Kok-Lim Low, G. Welch, A. Lastra, H. Fuchs, B. Cairns
{"title":"Combining Head-Mounted and Projector-Based Displays for Surgical Training","authors":"A. Ilie, Kok-Lim Low, G. Welch, A. Lastra, H. Fuchs, B. Cairns","doi":"10.1109/VR.2003.1191128","DOIUrl":null,"url":null,"abstract":"We introduce and present preliminary results for a hybrid display system combining head-mounted and projector-based displays. Our work is motivated by a surgical training application where it is necessary to simultaneously provide both a highfidelity view of a central close-up task (the surgery) and visual awareness of objects and events in the surrounding environment. In this article, we motivate the use of a hybrid display system, discuss previous work, describe a prototype along with methods for geometric calibration, and present results from a controlled human subject experiment. This article is an invited resubmission of work presented at IEEE Virtual Reality 2003. The article has been updated and expanded to include (among other things) additional related work and more details about the calibration process.","PeriodicalId":54588,"journal":{"name":"Presence-Teleoperators and Virtual Environments","volume":"20 1","pages":"128-145"},"PeriodicalIF":0.7000,"publicationDate":"2003-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Presence-Teleoperators and Virtual Environments","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/VR.2003.1191128","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 44
Abstract
We introduce and present preliminary results for a hybrid display system combining head-mounted and projector-based displays. Our work is motivated by a surgical training application where it is necessary to simultaneously provide both a highfidelity view of a central close-up task (the surgery) and visual awareness of objects and events in the surrounding environment. In this article, we motivate the use of a hybrid display system, discuss previous work, describe a prototype along with methods for geometric calibration, and present results from a controlled human subject experiment. This article is an invited resubmission of work presented at IEEE Virtual Reality 2003. The article has been updated and expanded to include (among other things) additional related work and more details about the calibration process.