Measurement and Analysis of Hajime, a Peer-to-peer IoT Botnet

Stephen Herwig, Katura Harvey, George Hughey, Richard Roberts, Dave Levin
{"title":"Measurement and Analysis of Hajime, a Peer-to-peer IoT Botnet","authors":"Stephen Herwig, Katura Harvey, George Hughey, Richard Roberts, Dave Levin","doi":"10.14722/ndss.2019.23488","DOIUrl":null,"url":null,"abstract":"The Internet of Things (IoT) introduces an unprecedented diversity and ubiquity to networked computing. It also introduces new attack surfaces that are a boon to attackers. The recent Mirai botnet showed the potential and power of a collection of compromised IoT devices. A new botnet, known as Hajime, targets many of the same devices as Mirai, but differs considerably in its design and operation. Hajime uses a public peer-to-peer system as its command and control infrastructure, and regularly introduces new exploits, thereby increasing its resilience. We show that Hajime’s distributed design makes it a valuable tool for better understanding IoT botnets. For instance, Hajime cleanly separates its bots into different peer groups depending on their underlying hardware architecture. Through detailed measurement—active scanning of Hajime’s peer-to-peer infrastructure and passive, longitudinal collection of root DNS backscatter traffic—we show that Hajime can be used as a lens into how IoT botnets operate, what kinds of devices they compromise, and what countries are more (or less) susceptible. Our results show that there are more compromised IoT devices than previously reported; that these devices use an assortment of CPU architectures, the popularity of which varies widely by country; that churn is high among IoT devices; and that new exploits can quickly and drastically increase the size and power of IoT botnets. Our code and data are available to assist future efforts to measure and mitigate the growing threat of IoT botnets.","PeriodicalId":20444,"journal":{"name":"Proceedings 2019 Network and Distributed System Security Symposium","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"124","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2019 Network and Distributed System Security Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14722/ndss.2019.23488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 124

Abstract

The Internet of Things (IoT) introduces an unprecedented diversity and ubiquity to networked computing. It also introduces new attack surfaces that are a boon to attackers. The recent Mirai botnet showed the potential and power of a collection of compromised IoT devices. A new botnet, known as Hajime, targets many of the same devices as Mirai, but differs considerably in its design and operation. Hajime uses a public peer-to-peer system as its command and control infrastructure, and regularly introduces new exploits, thereby increasing its resilience. We show that Hajime’s distributed design makes it a valuable tool for better understanding IoT botnets. For instance, Hajime cleanly separates its bots into different peer groups depending on their underlying hardware architecture. Through detailed measurement—active scanning of Hajime’s peer-to-peer infrastructure and passive, longitudinal collection of root DNS backscatter traffic—we show that Hajime can be used as a lens into how IoT botnets operate, what kinds of devices they compromise, and what countries are more (or less) susceptible. Our results show that there are more compromised IoT devices than previously reported; that these devices use an assortment of CPU architectures, the popularity of which varies widely by country; that churn is high among IoT devices; and that new exploits can quickly and drastically increase the size and power of IoT botnets. Our code and data are available to assist future efforts to measure and mitigate the growing threat of IoT botnets.
点对点物联网僵尸网络Hajime的测量与分析
物联网(IoT)为网络计算带来了前所未有的多样性和普遍性。它还引入了新的攻击面,这对攻击者来说是一个福音。最近的Mirai僵尸网络展示了一系列受损物联网设备的潜力和力量。一种名为Hajime的新型僵尸网络与Mirai攻击的设备相同,但在设计和操作上有很大不同。Hajime使用公共点对点系统作为其指挥和控制基础设施,并定期引入新的漏洞,从而提高其弹性。我们展示了Hajime的分布式设计使其成为更好地理解物联网僵尸网络的有价值的工具。例如,Hajime根据其底层硬件架构将其机器人清晰地划分为不同的对等组。通过详细的测量——主动扫描Hajime的点对点基础设施和被动、纵向收集根DNS反向散射流量——我们表明,Hajime可以作为一个镜头,了解物联网僵尸网络是如何运作的,它们会破坏什么样的设备,以及哪些国家更容易(或更少)受到影响。我们的研究结果表明,受感染的物联网设备比之前报道的要多;这些设备使用各种各样的CPU架构,其受欢迎程度因国家而异;物联网设备的流失率很高;新的漏洞可以迅速大幅增加物联网僵尸网络的规模和能力。我们的代码和数据可用于帮助未来测量和减轻物联网僵尸网络日益增长的威胁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信