Optimal stopping of Brownian motion with broken drift

High Frequency Pub Date : 2019-04-11 DOI:10.1002/hf2.10034
Ernesto Mordecki, Paavo Salminen
{"title":"Optimal stopping of Brownian motion with broken drift","authors":"Ernesto Mordecki, Paavo Salminen","doi":"10.1002/hf2.10034","DOIUrl":null,"url":null,"abstract":"We solve an optimal stopping problem where the underlying diffusion is Brownian motion on $\\bf R$ with a positive drift changing at zero. It is assumed that the drift $\\mu_1$ on the negative side is smaller than the drift $\\mu_2$ on the positive side. The main observation is that if $\\mu_2-\\mu_1>1/2$ then there exists values of the discounting parameter for which it is not optimal to stop in the vicinity of zero where the drift changes. However, when the discounting gets bigger the stopping region becomes connected and contains zero. This is in contrast with results concerning optimal stopping of skew Brownian motion where the skew point is for all values of the discounting parameter in the continuation region.","PeriodicalId":100604,"journal":{"name":"High Frequency","volume":"2 2","pages":"113-120"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/hf2.10034","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Frequency","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hf2.10034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

We solve an optimal stopping problem where the underlying diffusion is Brownian motion on $\bf R$ with a positive drift changing at zero. It is assumed that the drift $\mu_1$ on the negative side is smaller than the drift $\mu_2$ on the positive side. The main observation is that if $\mu_2-\mu_1>1/2$ then there exists values of the discounting parameter for which it is not optimal to stop in the vicinity of zero where the drift changes. However, when the discounting gets bigger the stopping region becomes connected and contains zero. This is in contrast with results concerning optimal stopping of skew Brownian motion where the skew point is for all values of the discounting parameter in the continuation region.

Abstract Image

破碎漂移布朗运动的最优停止
我们解决了一个最优停止问题,其中潜在的扩散是R上的布朗运动,并且在零处有一个正的分段常数漂移。假设负侧的漂移μ1小于正侧的漂移μ2。主要的观察结果是,如果μ 2−μ 1 >1 / 2,则存在在漂移发生变化的零附近停止的贴现参数值。然而,当折扣变大时,停止区域变得连通并包含零。这与斜布朗运动最优停止的结果相反,在斜参数大于1/2的情况下,在延拓区域的贴现参数的所有值的斜点都是斜点。在所有情况下,这些基于连续区域边界撞击时间的最优停止策略的实际实施将需要访问与连续时间建模框架一致的最高频率数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信