Clinical data sharing using Generative Adversarial Networks

S. M. Ayyoubzadeh, Seyed Mehdi Ayyoubzadeh, Marzieh Esmaeili
{"title":"Clinical data sharing using Generative Adversarial Networks","authors":"S. M. Ayyoubzadeh, Seyed Mehdi Ayyoubzadeh, Marzieh Esmaeili","doi":"10.20517/ch.2022.15","DOIUrl":null,"url":null,"abstract":"Obtaining data is challenging for researchers, especially when it comes to medical data. Moreover, using medical data as there are concerns about privacy and confidentiality issues requires specific considerations. Generative models aim to learn data distribution via various statistical learning approaches. Among generative models, a machine learning-based approach named Generative Adversarial Networks (GANs) has proved their potential in the implicit density estimation of high dimensional data. Therefore, we suggest an approach that each healthcare organization, especially hospitals, could create and share their own GAN model, entitled Hospital-Based GANs (H-GANs), instead of sharing raw data of patients.","PeriodicalId":93536,"journal":{"name":"Connected health","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Connected health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/ch.2022.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Obtaining data is challenging for researchers, especially when it comes to medical data. Moreover, using medical data as there are concerns about privacy and confidentiality issues requires specific considerations. Generative models aim to learn data distribution via various statistical learning approaches. Among generative models, a machine learning-based approach named Generative Adversarial Networks (GANs) has proved their potential in the implicit density estimation of high dimensional data. Therefore, we suggest an approach that each healthcare organization, especially hospitals, could create and share their own GAN model, entitled Hospital-Based GANs (H-GANs), instead of sharing raw data of patients.
使用生成对抗网络的临床数据共享
获取数据对研究人员来说是一个挑战,尤其是在医疗数据方面。此外,由于担心隐私和保密问题,使用医疗数据需要具体考虑。生成模型旨在通过各种统计学习方法来学习数据分布。在生成模型中,基于机器学习的生成对抗网络(GANs)已经证明了其在高维数据的隐式密度估计中的潜力。因此,我们建议采用一种方法,即每个医疗保健组织,特别是医院,可以创建和共享自己的GAN模型,称为基于医院的GAN (h -GAN),而不是共享患者的原始数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信