A FINE SCALE PARTIALLY COHERENT PATCH MODEL INCLUDING TOPOGRAPHICAL EFFECTS FOR GNSS-R DDM SIMULATIONS

IF 6.7 1区 计算机科学 Q1 Physics and Astronomy
Haokui Xu, Jiyue Zhu, L. Tsang, and Seung Bum Kim
{"title":"A FINE SCALE PARTIALLY COHERENT PATCH MODEL INCLUDING TOPOGRAPHICAL EFFECTS FOR GNSS-R DDM SIMULATIONS","authors":"Haokui Xu, Jiyue Zhu, L. Tsang, and Seung Bum Kim","doi":"10.2528/PIER20121201","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a fine scale partially coherent patch model (FPCP) for GNSS-R land applications for soil moisture retrieval. The land surface is divided into coherent planar patches on which microwave roughness is superimposed. The scattered waves of the coherent patch are decomposed into the coherent specular reflection and diffuse incoherent scattering. A fine scale of 2 meter patch size is chosen for the coherent patch to be applicable to complex terrain with large varieties of topographical elevations and with small to large topographical slopes. The summation of scattered fields over patches is carried out using physical optics. The phase term of the scattered wave of each patch is kept so that correlation scattering effects among patches are accounted for. Results are illustrated for power ratio for areas near the specular point and areas far away from the specular point. Comparisons are made with the radiative transfer geometric optics model. DDM simulations are performed with good agreement with CYGNSS data.","PeriodicalId":54551,"journal":{"name":"Progress in Electromagnetics Research-Pier","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Electromagnetics Research-Pier","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.2528/PIER20121201","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, we propose a fine scale partially coherent patch model (FPCP) for GNSS-R land applications for soil moisture retrieval. The land surface is divided into coherent planar patches on which microwave roughness is superimposed. The scattered waves of the coherent patch are decomposed into the coherent specular reflection and diffuse incoherent scattering. A fine scale of 2 meter patch size is chosen for the coherent patch to be applicable to complex terrain with large varieties of topographical elevations and with small to large topographical slopes. The summation of scattered fields over patches is carried out using physical optics. The phase term of the scattered wave of each patch is kept so that correlation scattering effects among patches are accounted for. Results are illustrated for power ratio for areas near the specular point and areas far away from the specular point. Comparisons are made with the radiative transfer geometric optics model. DDM simulations are performed with good agreement with CYGNSS data.
gnss-r DDM模拟中包含地形效应的小尺度部分相干斑块模型
本文提出了一种用于GNSS-R土地土壤水分反演的小尺度部分相干斑块模型(FPCP)。将地表划分为相干平面斑块,叠加微波粗糙度。将相干贴片的散射波分解为相干镜面反射和漫射非相干散射。为适应地形高程变化大、地形坡度大小不等的复杂地形,相干斑块选择2米的精细尺度。利用物理光学技术对散射场进行求和。保留了各片散射波的相位项,从而考虑了片间的相关散射效应。结果说明了在高光点附近区域和远离高光点区域的功率比。并与辐射传递几何光学模型进行了比较。DDM模拟结果与CYGNSS数据吻合良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
3.00%
发文量
0
审稿时长
1.3 months
期刊介绍: Progress In Electromagnetics Research (PIER) publishes peer-reviewed original and comprehensive articles on all aspects of electromagnetic theory and applications. This is an open access, on-line journal PIER (E-ISSN 1559-8985). It has been first published as a monograph series on Electromagnetic Waves (ISSN 1070-4698) in 1989. It is freely available to all readers via the Internet.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信