Multi-Trek Separation in Linear Structural Equation Models

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED
Elina Robeva, Jean-Baptiste Seby
{"title":"Multi-Trek Separation in Linear Structural Equation Models","authors":"Elina Robeva, Jean-Baptiste Seby","doi":"10.1137/20M1316470","DOIUrl":null,"url":null,"abstract":"Building on the theory of causal discovery from observational data, we study interactions between multiple (sets of) random variables in a linear structural equation model with non-Gaussian error terms. We give a correspondence between structure in the higher order cumulants and combinatorial structure in the causal graph. It has previously been shown that low rank of the covariance matrix corresponds to trek separation in the graph. Generalizing this criterion to multiple sets of vertices, we characterize when determinants of subtensors of the higher order cumulant tensors vanish. This criterion applies when hidden variables are present as well. For instance, it allows us to identify the presence of a hidden common cause of k of the observed variables.","PeriodicalId":48489,"journal":{"name":"SIAM Journal on Applied Algebra and Geometry","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2020-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Algebra and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/20M1316470","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5

Abstract

Building on the theory of causal discovery from observational data, we study interactions between multiple (sets of) random variables in a linear structural equation model with non-Gaussian error terms. We give a correspondence between structure in the higher order cumulants and combinatorial structure in the causal graph. It has previously been shown that low rank of the covariance matrix corresponds to trek separation in the graph. Generalizing this criterion to multiple sets of vertices, we characterize when determinants of subtensors of the higher order cumulant tensors vanish. This criterion applies when hidden variables are present as well. For instance, it allows us to identify the presence of a hidden common cause of k of the observed variables.
线性结构方程模型中的多重分离
在观测数据因果发现理论的基础上,我们研究了具有非高斯误差项的线性结构方程模型中多个(组)随机变量之间的相互作用。给出了高阶累积量结构与因果图中组合结构的对应关系。以前已经证明,在图中,协方差矩阵的低秩对应于跋涉分离。将此准则推广到多个顶点集,我们刻画了高阶累积张量的子张量的行列式何时消失。这个标准也适用于存在隐藏变量的情况。例如,它允许我们识别k个观察变量的隐藏共同原因的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信