New complexity results on Roman {2}-domination

Lara Fernández, V. Leoni
{"title":"New complexity results on Roman {2}-domination","authors":"Lara Fernández, V. Leoni","doi":"10.1051/ro/2023049","DOIUrl":null,"url":null,"abstract":"The study of a variant of Roman domination was initiated by Chellali et al. (2016).  Given a graph $G$ with vertex set $V$, a Roman $\\{2\\}$-dominating function $f : V \\rightarrow \\{0, 1, 2\\}$ has the property that for every vertex $v\\in V$ with $f(v) =0$, either there exists a vertex $u$ adjacent to $v$ with $f(u) = 2$, or at least two vertices $x,\\; y$  adjacent  to $v$ with $f(x)=f(y)=1$. The weight of a Roman $\\{2\\}$-dominating function is the value $f(V) = \\sum_{v\\in V} f(v)$. The minimum weight of a Roman $\\{2\\}$-dominating function is called the Roman $\\{2\\}$-domination number and is denoted by $\\gamma_{\\{R2\\}}(G)$.  In this work we find several NP-complete instances of the Roman  $\\{2\\}$-domination problem: chordal graphs, bipartite planar graphs, chordal bipartite graphs, bipartite with maximum degree 3 graphs, among others. A result by Chellali et al. (2016) shows that $\\gamma_{\\{R2\\}}(G)$ and the 2-rainbow domination number of $G$ coincide when $G$ is a tree, and thus, the linear time algorithm for $k$-rainbow domination due to Bresar et al. (2008) can be followed to compute $\\gamma_{\\{R2\\}}(G)$. In this work we develop an efficient algorithm that is independent of $k$-rainbow domination and computes the Roman $\\{2\\}$-domination number on a subclass of trees called caterpillars.","PeriodicalId":20872,"journal":{"name":"RAIRO Oper. Res.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ro/2023049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The study of a variant of Roman domination was initiated by Chellali et al. (2016).  Given a graph $G$ with vertex set $V$, a Roman $\{2\}$-dominating function $f : V \rightarrow \{0, 1, 2\}$ has the property that for every vertex $v\in V$ with $f(v) =0$, either there exists a vertex $u$ adjacent to $v$ with $f(u) = 2$, or at least two vertices $x,\; y$  adjacent  to $v$ with $f(x)=f(y)=1$. The weight of a Roman $\{2\}$-dominating function is the value $f(V) = \sum_{v\in V} f(v)$. The minimum weight of a Roman $\{2\}$-dominating function is called the Roman $\{2\}$-domination number and is denoted by $\gamma_{\{R2\}}(G)$.  In this work we find several NP-complete instances of the Roman  $\{2\}$-domination problem: chordal graphs, bipartite planar graphs, chordal bipartite graphs, bipartite with maximum degree 3 graphs, among others. A result by Chellali et al. (2016) shows that $\gamma_{\{R2\}}(G)$ and the 2-rainbow domination number of $G$ coincide when $G$ is a tree, and thus, the linear time algorithm for $k$-rainbow domination due to Bresar et al. (2008) can be followed to compute $\gamma_{\{R2\}}(G)$. In this work we develop an efficient algorithm that is independent of $k$-rainbow domination and computes the Roman $\{2\}$-domination number on a subclass of trees called caterpillars.
新的复杂性导致了罗马{2}的统治
对罗马统治的一种变体的研究是由Chellali等人(2016)发起的。给定一个图 $G$ 有顶点集 $V$罗马人 $\{2\}$-支配函数 $f : V \rightarrow \{0, 1, 2\}$ 对每个顶点都有这个性质吗 $v\in V$ 有 $f(v) =0$,要么存在一个顶点 $u$ 与…相邻 $v$ 有 $f(u) = 2$,或者至少两个顶点 $x,\; y$与…相邻 $v$ 有 $f(x)=f(y)=1$. 一个罗马人的重量 $\{2\}$-支配函数为值 $f(V) = \sum_{v\in V} f(v)$. 罗马人的最小重量 $\{2\}$-支配功能被称为罗马 $\{2\}$-支配数,用 $\gamma_{\{R2\}}(G)$。在这部作品中,我们发现了几个np完备的罗马例子 $\{2\}$-控制问题:弦图,二部平面图,弦二部图,最大3次二部图等。Chellali et al.(2016)的结果表明 $\gamma_{\{R2\}}(G)$ 双彩虹支配数是 $G$ 巧合时 $G$ 是树,因此,线性时间算法为 $k$- brresar等人(2008)的彩虹支配可以遵循计算 $\gamma_{\{R2\}}(G)$. 在这项工作中,我们开发了一种独立于 $k$-彩虹统治和计算罗马 $\{2\}$——一种叫做毛虫的树的子类的支配数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信