On 2-Riemannian manifolds

Q4 Mathematics
C. Morales, M. Vilches
{"title":"On 2-Riemannian manifolds","authors":"C. Morales, M. Vilches","doi":"10.55937/sut/1280430129","DOIUrl":null,"url":null,"abstract":"A {\\em 2-Riemannian manifold} is a differentiable manifold exhibiting a 2-inner product on each tangent space. We first study lower dimensional 2-Riemannian manifolds by giving necessary and sufficient conditions for flatness. Afterward we associate to each 2-Riemannian manifold a unique torsion free compatible pseudoconnection. Using it we define a curvature for 2-Riemannian manifolds and study its properties. We also prove that 2-Riemannian pseudoconnections do not have Koszul derivatives. Moreover, we define stationary vector field with respect to a 2-Riemannian metric and prove that the stationary vector fields in $\\mathbb{R}^2$ with respect to the 2-Riemannian metric induced by the Euclidean product are the divergence free ones.","PeriodicalId":38708,"journal":{"name":"SUT Journal of Mathematics","volume":"141 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SUT Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55937/sut/1280430129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 9

Abstract

A {\em 2-Riemannian manifold} is a differentiable manifold exhibiting a 2-inner product on each tangent space. We first study lower dimensional 2-Riemannian manifolds by giving necessary and sufficient conditions for flatness. Afterward we associate to each 2-Riemannian manifold a unique torsion free compatible pseudoconnection. Using it we define a curvature for 2-Riemannian manifolds and study its properties. We also prove that 2-Riemannian pseudoconnections do not have Koszul derivatives. Moreover, we define stationary vector field with respect to a 2-Riemannian metric and prove that the stationary vector fields in $\mathbb{R}^2$ with respect to the 2-Riemannian metric induced by the Euclidean product are the divergence free ones.
在2-黎曼流形上
A {\em 2-黎曼流形}是在每个切空间上表现出2-内积的可微流形。本文首先研究了低维2-黎曼流形,给出了其平坦性的充分必要条件。然后我们给每个2-黎曼流形关联一个唯一的无扭相容伪连接。用它定义了2-黎曼流形的曲率,并研究了曲率的性质。我们还证明了2- riemann伪连接没有Koszul导数。此外,我们定义了关于2-黎曼度规的平稳向量场,并证明了由欧几里得积导出的关于2-黎曼度规的$\mathbb{R}^2$中的平稳向量场是无散度的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
SUT Journal of Mathematics
SUT Journal of Mathematics Mathematics-Mathematics (all)
CiteScore
0.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信