AnnArbor: Approximate Nearest Neighbors Using Arborescence Coding

Artem Babenko, V. Lempitsky
{"title":"AnnArbor: Approximate Nearest Neighbors Using Arborescence Coding","authors":"Artem Babenko, V. Lempitsky","doi":"10.1109/ICCV.2017.523","DOIUrl":null,"url":null,"abstract":"To compress large datasets of high-dimensional descriptors, modern quantization schemes learn multiple codebooks and then represent individual descriptors as combinations of codewords. Once the codebooks are learned, these schemes encode descriptors independently. In contrast to that, we present a new coding scheme that arranges dataset descriptors into a set of arborescence graphs, and then encodes non-root descriptors by quantizing their displacements with respect to their parent nodes. By optimizing the structure of arborescences, our coding scheme can decrease the quantization error considerably, while incurring only minimal overhead on the memory footprint and the speed of nearest neighbor search in the compressed dataset compared to the independent quantization. The advantage of the proposed scheme is demonstrated in a series of experiments with datasets of SIFT and deep descriptors.","PeriodicalId":6559,"journal":{"name":"2017 IEEE International Conference on Computer Vision (ICCV)","volume":"121 1","pages":"4895-4903"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2017.523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

To compress large datasets of high-dimensional descriptors, modern quantization schemes learn multiple codebooks and then represent individual descriptors as combinations of codewords. Once the codebooks are learned, these schemes encode descriptors independently. In contrast to that, we present a new coding scheme that arranges dataset descriptors into a set of arborescence graphs, and then encodes non-root descriptors by quantizing their displacements with respect to their parent nodes. By optimizing the structure of arborescences, our coding scheme can decrease the quantization error considerably, while incurring only minimal overhead on the memory footprint and the speed of nearest neighbor search in the compressed dataset compared to the independent quantization. The advantage of the proposed scheme is demonstrated in a series of experiments with datasets of SIFT and deep descriptors.
AnnArbor:使用树影编码的近似近邻
为了压缩高维描述符的大型数据集,现代量化方案学习多个码本,然后将单个描述符表示为码字的组合。一旦了解了码本,这些方案就独立地对描述符进行编码。与此相反,我们提出了一种新的编码方案,该方案将数据集描述符排列成一组树形图,然后通过量化它们相对于父节点的位移来编码非根描述符。通过优化树形序列的结构,我们的编码方案可以大大减少量化误差,同时与独立量化相比,压缩数据集中的内存占用和最近邻搜索速度只产生最小的开销。在SIFT和深度描述符的数据集上进行了一系列实验,证明了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信