Structural classification of multi-input biological nonlinear systems

Hai-Wen Chen, L. D. Jacobson, J. Gaska, D. Pollen
{"title":"Structural classification of multi-input biological nonlinear systems","authors":"Hai-Wen Chen, L. D. Jacobson, J. Gaska, D. Pollen","doi":"10.1109/ICSMC.1989.71427","DOIUrl":null,"url":null,"abstract":"Structural classification and parameter estimation results that are applicable to multi-input nonlinear biological systems are presented. To use these methods properly, it is necessary first to establish that the structure of the system under study belongs to one of the broad structural classes examined; such a priori constraints would generally be inferred from the known anatomical and physiochemical properties of the system. Using the methods presented, input-output measurements are used to restrict the structural classification of the system further and to estimate the parameters of the classified model. Ongoing efforts to identify the spatiotemporal nonlinear networks that underlie the extracellularly recorded (spike) responses of visual cortical neurons to photic stimulation are discussed.<<ETX>>","PeriodicalId":72691,"journal":{"name":"Conference proceedings. IEEE International Conference on Systems, Man, and Cybernetics","volume":"115 1","pages":"903-908 vol.3"},"PeriodicalIF":0.0000,"publicationDate":"1989-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference proceedings. IEEE International Conference on Systems, Man, and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSMC.1989.71427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Structural classification and parameter estimation results that are applicable to multi-input nonlinear biological systems are presented. To use these methods properly, it is necessary first to establish that the structure of the system under study belongs to one of the broad structural classes examined; such a priori constraints would generally be inferred from the known anatomical and physiochemical properties of the system. Using the methods presented, input-output measurements are used to restrict the structural classification of the system further and to estimate the parameters of the classified model. Ongoing efforts to identify the spatiotemporal nonlinear networks that underlie the extracellularly recorded (spike) responses of visual cortical neurons to photic stimulation are discussed.<>
多输入生物非线性系统的结构分类
给出了适用于多输入非线性生物系统的结构分类和参数估计结果。为了正确地使用这些方法,首先必须确定所研究的系统的结构属于所研究的广义结构类之一;这种先验的约束通常是从已知的系统的解剖和物理化学性质中推断出来的。利用所提出的方法,利用输入输出度量来进一步限制系统的结构分类,并估计分类模型的参数。正在进行的努力,以确定时空非线性网络的基础上的记录(spike)视觉皮质神经元的光刺激的细胞外反应的讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信