High-Resolution Estimation of Methane Emissions from Boreal and Pan-Arctic Wetlands Using Advanced Satellite Data

Remote. Sens. Pub Date : 2023-07-06 DOI:10.3390/rs15133433
Yousef A. Y. Albuhaisi, Y. Velde, R. Jeu, Zhen Zhang, S. Houweling
{"title":"High-Resolution Estimation of Methane Emissions from Boreal and Pan-Arctic Wetlands Using Advanced Satellite Data","authors":"Yousef A. Y. Albuhaisi, Y. Velde, R. Jeu, Zhen Zhang, S. Houweling","doi":"10.3390/rs15133433","DOIUrl":null,"url":null,"abstract":"This paper investigates the use of soil moisture data from satellites and a hydrological model as inputs to a simplified CH4 emission model (MeSMOD) for estimating CH4 emissions from boreal and pan-Arctic regions between 2015 and 2021. MeSMOD is calibrated using FLUXNET—CH4 sites and the predictive performance is evaluated using several metrics, including the Nash-Sutcliffe efficiency (NSE). Using satellite soil moisture with 100 m resolution, MeSMOD has the highest performance (NSE = 0.63) compared with using satellite soil moisture of 10 km and hydrological model soil moisture of 10 km and 50 km (NSE = 0.59, 0.56, and 0.53, respectively) against site-level CH4 flux. This study has upscaled the estimates to the pan-Arctic region using MeSMOD, resulting in comparable mean annual estimates of CH4 emissions using satellite soil moisture of 10 km (33 Tg CH4 yr−1) and hydrological model soil moisture of 10 km (39 Tg CH4 yr−1) compared with previous studies using random forest technique for upscaling (29.5 Tg CH4 yr−1), LPJ-wsl process model (30 Tg CH4 yr−1), and CH4 CAMS inversion (34 Tg CH4 yr−1). MeSMOD has also accurately captured the high methane emissions observed by LPJ-wsl and CAMS in 2016 and 2020 and effectively caught the interannual variability of CH4 emissions from 2015 to 2021. The study emphasizes the importance of using high-resolution satellite soil moisture data for accurate estimation of CH4 emissions from wetlands, as these data directly reflect soil moisture conditions and lead to more reliable estimates. The approach adopted in this study helps to reduce errors and improve our understanding of wetlands’ role in CH4 emissions, ultimately reducing uncertainties in global CH4 budgets.","PeriodicalId":20944,"journal":{"name":"Remote. Sens.","volume":"40 1","pages":"3433"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote. Sens.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/rs15133433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the use of soil moisture data from satellites and a hydrological model as inputs to a simplified CH4 emission model (MeSMOD) for estimating CH4 emissions from boreal and pan-Arctic regions between 2015 and 2021. MeSMOD is calibrated using FLUXNET—CH4 sites and the predictive performance is evaluated using several metrics, including the Nash-Sutcliffe efficiency (NSE). Using satellite soil moisture with 100 m resolution, MeSMOD has the highest performance (NSE = 0.63) compared with using satellite soil moisture of 10 km and hydrological model soil moisture of 10 km and 50 km (NSE = 0.59, 0.56, and 0.53, respectively) against site-level CH4 flux. This study has upscaled the estimates to the pan-Arctic region using MeSMOD, resulting in comparable mean annual estimates of CH4 emissions using satellite soil moisture of 10 km (33 Tg CH4 yr−1) and hydrological model soil moisture of 10 km (39 Tg CH4 yr−1) compared with previous studies using random forest technique for upscaling (29.5 Tg CH4 yr−1), LPJ-wsl process model (30 Tg CH4 yr−1), and CH4 CAMS inversion (34 Tg CH4 yr−1). MeSMOD has also accurately captured the high methane emissions observed by LPJ-wsl and CAMS in 2016 and 2020 and effectively caught the interannual variability of CH4 emissions from 2015 to 2021. The study emphasizes the importance of using high-resolution satellite soil moisture data for accurate estimation of CH4 emissions from wetlands, as these data directly reflect soil moisture conditions and lead to more reliable estimates. The approach adopted in this study helps to reduce errors and improve our understanding of wetlands’ role in CH4 emissions, ultimately reducing uncertainties in global CH4 budgets.
利用先进卫星数据估算北方和泛北极湿地甲烷排放的高分辨率
本文研究了利用卫星土壤湿度数据和水文模型作为简化CH4排放模型(MeSMOD)的输入,用于估算2015 - 2021年间北方和泛北极地区的CH4排放量。MeSMOD使用FLUXNET-CH4位点进行校准,并使用包括Nash-Sutcliffe效率(NSE)在内的几个指标评估预测性能。利用100 m分辨率的卫星土壤湿度,与利用10 km的卫星土壤湿度和10 km和50 km的水文模型土壤湿度(NSE分别为0.59、0.56和0.53)相比,MeSMOD对站点水平CH4通量的NSE为0.63。本研究使用MeSMOD将估算值升级到pan-Arctic地区,与之前使用随机森林技术进行升级(29.5 Tg CH4 yr - 1)、LPJ-wsl过程模型(30 Tg CH4 yr - 1)和CH4 CAMS反演(34 Tg CH4 yr - 1)的研究相比,利用卫星土壤湿度10 km (33 Tg CH4 yr - 1)和水文模式土壤湿度10 km (39 Tg CH4 yr - 1)得出的CH4排放量的平均年估算值可比较。MeSMOD还准确捕获了2016年和2020年LPJ-wsl和CAMS观测到的高甲烷排放,并有效捕获了2015 - 2021年CH4排放的年际变化。该研究强调了使用高分辨率卫星土壤湿度数据准确估算湿地CH4排放的重要性,因为这些数据直接反映了土壤湿度状况,并导致更可靠的估算。本研究采用的方法有助于减少误差,提高我们对湿地在CH4排放中的作用的理解,最终减少全球CH4预算的不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信